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On the Fourier ultra-hyperfunctions, I
by Mitsuo MORIMOTO y
Cf;o?QMLQ. L14A557j>
This paper is a continuation of our ﬁreviousAWOrk
[7]. We study here the Fourier ultra-hyperfunctions
representing them by means éf holomorphic functibns with -
some‘growth conditions. We will find a theory analogous
to that of analytic fﬁnctionals)discribed in [4].
{as
§1. Definitions
Let V be a real Euclidean space of dimension n and
E a compexificaﬁion of V: V=1R", E =V x iv®™ R?x iRr" éan,
i= /<I. "Put V' = Homp (V, R) and E' = HomC(E, c), theﬁ
E' is a complexification of V' : E' = V'x iV', We are
going to denote generally the point of E by z = (x, 7)
= x + iy and the point of E' by £ = (§, n) = & -+ in.
We denote the canonical inner product of V x V' and E x E'
by the same notation <,> so that we have |
<x + iy, £ + in> = <x, £> - <y,n> + i{<y,E> + <x,n>} .
For a bounded set X' of V', we put
hK,£x) = sup{< x,n> ; n ;K'}
and call it the indicator function of X*. - For two convex
compact sets K" and L' of V', the inclusion K'€ L' is |
equivalend§o the relation " hK.(x)£§ hL,(x) for allyx € V”.
If Vv = R%, we identify V' with R® by the inner product

<x,g> = x1€1‘+ XZE;Z terr v xp g . IE K= [-K7, k'1"
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= ix eR"; (le k' for any § = 1, 2, vees ,n}', ‘we have
clearly hy,(x) = k'( |xl\ + +ix ) = k! [vxl,,wljaefe“w'ejput_
I CA R PR |

Notation. r , [\ represent convex cl@Sed sets of V.

K, L (resnr. K' and L') represent édnvéx compé_c_t fséts‘in N
(resp. V').

Definition 1. Suppose P K and K' have non-empty

°

interiors P,,, K and K' Then we vdenote by Qb(.f‘x iK;- K') N

‘the space of all continuou_s vﬂfunctionskf on r‘ x 1K which are.
holomorphic in the interior r!‘ X iIE and satisfy thé éstima»te;
sup {_exp(hK,(x))l,f’(z)l; ze | x in’( o, x-=’Ré»z";v 1)
It is clear that the space Q ([ x iK' K') endowed with
the norm (1) is a Banach space. If Ax iL D vaiK and
L' DK', the restriction |
Qb(Ax iL; L') ...-_> Qb(l"x 1K; K') (2)

is continuous.

Definitlon 2. For general r K and K', we put
Q(["x 1K; X*) = 1lim ind Q(Ax iL; L), (3)
Ax iLD0x iR
L!D) K'

where A@B means that A contains a neighborhood of B and the
inductive 1limit is taken following the mappings (2).

Proposition 1. . The space Q([ x 1iK; K') endowed with

the locally convex inductive limit topology is a DFS space,
namely the strong dual space of a Fre_chet—Schwartz space.

In fact, 1f A x 1L 3)['x 1K and L'DK', then the
Liv

mapping (2) is compact. Hence, ‘Mezda@iqﬂ%eai Q' x 1k k')

is a DFS space.-
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Suppose V = R

and put

Bi='{xeﬁn; lxj‘<8 for any j = 1, 2, ...,n}. ()
For [" and Kwe put lg = ["+ By, K¢ = K + By . We will
denote by é} the sheaf of germs of holomorphic functions
on E and é)(éno the space of all holomorphic functions on
an open set SL of E. A function fe Q( [ x iK; K') can be
characterized as follows: There exist § >0 and E;)‘J such
that € Q¢ T;.. x iKg ) and that

sup iexp(hK,(x) + 2;{x|)lf(z)‘; z eil'x iKt.E‘ . (5)

Definition 3 For an open convex set ) of V and an

open c¢ovex set Lg’ of V' we put
QUM x 1w; K') = 1lim proj Q( " x iK; X%), (6)
Kw

1im proj Q( T" x iK; K'), (7)
K'ccw’

Q( Px iK; ")

o Mxiw; W ) = lim proj (" x 1K; K'), (8)
Kccw

K< w’
where the projective limits are taken following the canonical
mappings induced from the mappings (2).

In [7] we studied the space Q(E) = Q(V x iV; V'). We
established among others that the space Q(E) is a Frechet nuclear
space and inyariant under the Fourier transformation. A
continuous linear functional on Q(E) is, by definition, a Fourier
ultra-hyperfunction. On the other hand, Kawai [2] studied. the
space Q(V x iW; 0). which he denoted by ‘g?(Dn x iW) and
its dual space in his study on the Fourier hyperfunctions of

M. Sato.
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In this paper, we study generally the space Q( [' x iK; K')
and its dual space Q' (T x iK; K'). 1In Sectioﬁ 2, we improve
a result of [7] concerning the Fourier invariance of the space’
Q(E). Namely we prove the Fourier transformation glves a
topological isomorphism of Q(V x iK; K') onto Q(V' x iK'; -K)
(Theorem 1). By duelity we can define the Fourier trensforhation
3‘& of Q"(V x 1K; K') onto Q'(V' x i{<K'); K). In Section 3,
we introduce some new spaces of holomorphic functions,‘by
" which the dual space Q'(V.x iK; K') can be described. In
‘Sections I and 5 we restrict ourselves to the case whefe dim VvV = 1,
First we represent Q¥(V x iK; K') as the quotient space of
the space introduced‘in Section 3 (Theorem 2), then we study
again the Fourler transformation of Q'(V x iK; K') and
give it another definition. We may generalize the results of
Secfions 4 and 5 to the n-dimensional case. This will be the

subject of the forthcoming paper.

§2a. Fourier transformation of Q(V x iK; K').

We improve a result of [7] concerning the Fourier invariance
of the space Q(E) = @(V x iV3V').

If O€K and O0€K', the restriction

Q(V x 1K; K') 9 f »-.-.—>f| € A o (9)
is a continuous injection, where 48(V7 denotes the space
of -all rapidly decreasing C functions on V. In this case we
may consicer the space Q(V x iK; K') as a subspace of gg(\ﬂ
by the injection (9).1 We recall the Fourier transform g%f =

of fé€ y& (V) is defined as follows:
f(g) j j £(x) exp(-ix, ;)) dXq.. X . ’ (10)

-4 -
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It is well known the Fourier tr'ansf'or'm'ad:ion:T'l is a topological
isomrphism: |

F:dwm == Ay, | (11)
The inverse Fourler trans formation J‘l is given by

335(}()' = (2m) ™ ‘S'S ?(g) exp(i{x,i)) d§1...d§n (12)
for S> 6,2 (v'). A

Let f | € Q(V x 1K; K') be given. There exist positive
numbers 8, and Eo,such that f éG(V X iKi. ) and that

supiexp(hK,(x) + ‘c',; lx\)\f(z)l ; 2 €V x iKE.}U?O; (13)
Therefore, for any y € Ki we have

j Sf(x + iy) exp(-ifx, S)) axq...dx

< CSVSexp( hK,(x)—g | \+<x M) dxq...dx .
Hence, if < x, 1])( hyo (x) + ¢/ | x| for all x€V (0< g’ <£° ),
the integral '

?( S;Vy) = SVX £(x + 1y) exp(—i(x,§> ) dxq...dx (14)
converges absolutely‘ and uniformly in § . As E' may be
chosen arbitrarily close to E: s £( S; y) 1is holomorphic in

V' x iK'.» . It can be easily shown by the Cauchy integral

€
theorem that ?( §5 y) 1is independent of y & KE . We denote
: : o
. ool ~
£(8) = £0& 59, ye K¢, - (15)
and call it the Fourier transformation of f € Q(V x iK; K').

\V‘&QT\W\/? ‘‘‘‘‘‘
If O€K and 0€ K', this Fourier transformation is\the restriction

of the Fourier transformation of aS (V). Therefore we use the

same notation 3‘ for the Fourier transformation of Q(V x iK; K').

Theorem 1. The Fourier transformation 3‘ gives a topological
isomorphism:
F: AV x iK; K') = Q(V' x iK'; -K). (16)
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Proof. Let £ € Q(V x iK; K'). Suppose f satisfy (13).
We estimate \?( g )\ - For y€ K¢ we have :

T(Y) = f8; )

S f(x + iy) exp(-i{lx, §> + (x,'rl) ) dxl...dxn-
v 'exp(i(y,*l7 +<y,§>).
Hence we have for y € KE. and ’rle K'z: (o0 < 8'(80/ ),

|T(% )| exp(~¢y, §»)

£cC 5 Sexp(-hK,(x) - E,\x\ + hy (x) + 5{){\) dxq...dx

= C S -§ exp(( € - ‘E,. Mx|) dxy...dx <00 .

This glves ’ '
supiexp(hK(—xg) + &5 )l'fv( DI meE K }‘“’
We have thus provéd

Fav x ik; k') C Q(V' x iK'; -K). (17)
As the fransformation f(z) == f(-2z) is a topological |
isomorphism of Q(V x iK; K') onto Q(V x i(-K); -K'), we have

TV x iK'; -K) C Qv x iK; K'), (18)
where, by definition, }g(z) = (21()‘“(5"50)(-z).

If Oe¢K and O €K', the theorem results from the
topological isomorphism (11) thanks to (17) and (18).
Consider the general case. If Yo € K, the tfansfation

T-iyo : f(z) t—-——-)fiyo(z) =. f(z + iyo)
gives a topological isomorphism:

Q(V x 1K; K') = Q(V x i(K - yo); K').

If "M, € K', the multiplication £(z) b2y £ Z:Mo? p(yy
gives a topological isomorphism: '

Q(V x iK; K') ey Q(V x 1K; (K' - *lo )) .

Fix ‘yo € K and "’lo € K'. Then the Fourier transformation of.

Q(Vx iK; K') decomposes as follows:

-6 -
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-l'éo e(f.’lt?
QV x 1K; K') —— Q(V x 1(K - y )3 K') ——
1 1 ) 3‘ 1 * 1
QE‘\_{ x K -y ) 5 K" = o) —.———;_‘Q(Xs,x 1K' = Mo); =(K = y.))
—2%y Q(V' x 1K'; -K + Vo) —— Q(V' x iK'; -K).

All arrows being topological-isomorphisms, (16) is a topological

isomorphism. qg.e.d.
Corollary. For an open convex set W of V and an open

convex set (o’of V', the Fourier trans formation Eﬁ gives
a topological isomorphism:

FraWwxiw; w) =L o xiw; -w). (19)
Remark. We established the isomorphism (19) in the case
where W= V and W = V' in [7]. Kawai [2] studied the |
.isomor‘phism (16) for Q(Dn) = Q(V x i(); 0).

By duality we can define the Fourier transformation
of Q'(V x iK; K') which we denote occasionally by EﬁL:

CFe, F Uy = -, L, (20
for f € Q(V x i(-K); -XK") and Le qr(v x iK; K').g& gives
a topological isomorphism:

5"&: Q' (V x 1K; K') —— Q" (V! x 1(=K'); K). (20) =2

We will give another definition of the Fourier transformation of

Q' (V x iK; K').

§3. Some new spaces of holomorphic functions.
Denote by V the spherical compéctification of V:
Y = V'LJSn—l, where S%71 is the sphere at the infinity.
@Es considered as a subset of V x iV, If a subset F of E is
relatively compact in V’x iv, F is said to be imaginary

bounded.



17

Definition 4. For an imaginary bounded closed set in E

and a convex compact set K' in V', we denote by Rb(F; K')

the space of all continuous functions f on F such that f is

‘holomorph'ic in ?" and that ‘
sup{lf(z)texp(-hK,(x)); z € an}<oo . (21)
Rb(F; K') endowed with the norm (21) is clearly a

Banaéh space. If F G are two imaginary bounded r-:los'ed sets of

The .
E and K" L', we haves following continuous mappings:

Rb(Q; K') ———9 R (G; L")

L L (22)

R (F; XK') ——> R (F; L').

Definition 5. . For an open set Q of E we put
R(SY; K') = 1lim proj R (F; L'),
U >»k” °
F CC Su

where F runs through the all imaginary bounded closed
subsets of.ﬂ, and the projective 1limit is taken followikng'
‘the mappings(22).

Proposition 2. The space R(S},; K') is an FS space.

In fact, if FG G and K'L', the mappings in (22)
are all compact. . '

We will see the dual space of Q( [* x 1K; k') can be
" represented by means of the spaces of type R(.ﬂ."; K'). in fhe ;
next section we study the case where V = R. TRe. Cade wliie dw Vi
kg Trreked im b %ntkghn@é hroadgea |
§H Dual space of Q( 1" x 1K; K'). (one dimensional case)
et '“i‘Ir'l'Sectionsflifand 5 we 'assume V = R,

~
For a closed set D of C, we put D, =D + B, , where

» é
By ={z=x+iy€c; Ixlee, Ivl¢f]. @3

- 8 -
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For a closed set D in C, the space R(C~D; K') coincides with
the space of all holomorphic functions f on C~ D such thait.:r,
for any &> 0O and E’) 0 and for any compact set L in R,
sup{lf(z)\ exp(=hy, (x) - £"x\); z € (R x iL)n(C’\ D;_)} < 00, (24)

In the sequel, we assume for the simplicity D = f" x iK,
m
wnere [' 15 V= r, [y ={xenr; sz}, T =-T} or

o

p, = T, x1iK, D = [. x iK and D, = Ty x iK. We will

{o}, and K = [k, k,]. We will denote D = [s x iK,

assume also K' = [k!, ké], L' = [4r, lé], ete.
Prepare a lemma.
Lemma 1. "Let f be a holomorphic function in D£ for some

€ » 0 and satisfy the following two conditions:

(1) supsllf(z)l; z € DD}QM < 00;

n
(i1) | fzN§¢C ec'lx\ on D with some integer n and C% O
and c'2 0.

Then |f| is bounded by M on D.
Proof. For D = Do’ Lemma is obvious by the maximum modulus
principle. Suppose D = D_. Put

W=or eig = exp(-‘%z) = exp(;—lé-:x) exp(i-‘-s:-y)
and - »
Qo r oy o< EL
Then f'(w) = f(z) is holomorphic in a neighborhood of D'
and lf"(w)l is bounded by M on @ D'. On D', we have

2
&y

lerw)l g ¢ e®’ o C exp(e'( -"%?— log r)™) = o(e
for any § > 0. By the Phragmén—Lindele theorem, [f"(w)\
is bounded by M on D', which implies that {fl is bounded by
M.on D. For D = D_, the proof is similar. If D = Dw , \

applying the above argument two times we see that\fl is
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bounded on D.. Hence by a theorem of,Lindelof lf\ is bounded

by M on D. | -  g.e.d.

Corollary 1. The restriction mapping R(C; K'ﬁ.le——+§
R(CND; K') being injective, B(C; K') 'is considered as

a subspace of R(CND; K'). Then R(C; K') 1is a cldsedgéubspacev
of the space R(C D3 K'). '

.Definition 6. We put

HL(C; R(K')) = R(CND; K') / R(C; K'). (25)
As a quotient space of an FS space by its closed subSpace,
the space H%(C; R(K')) is an FS space.
Lemma 2. If XK'¢C L', then the canonical mapping
HI(C; R(K')) ——3 H(C; R(L')) (26)
is injective.
Proof. We have only to show that f € R(C N D; K') ~ R(C; L")
implies £ € R(C; K'). If D = Do’ H%(C;‘R(K')) is equai'ﬁb
Hé(C; (& ). Hence it is independenﬁ of X'. Suppose D =D_.
If £ € R(CND; K') A R(C; L'), then for any € » O and &' >0,
‘e_(k' + ¢ )z f(z)\ is bounded on 7 Dg and of exponential‘

type on D¢ . Therefore, by Lemma 1, it is bounded 6n Dy .

The cases D = D_ and D = Dg can be treated similarly.

g.e.d.
Definition 7. We put
H (c R(K')) = 1im proj Hp (C R(L')) ‘ (27)
v K

We will denote by [ 5%’3 the element of Hy (C R(K')) defined
by a system of functions ?i' € R(C\ND; e, Vs ey 0, such that

/ /
for any pair & <& ,
- € . Rx .
Fy - Ty € RCG Ky

- 10 -
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ﬁ% will be said a representative of [ 92'] belonging to

R(C\ D; KT;, ). Remark we have by Lemma 2,
HX(C; R(K')) Hi(c; R(K')

. D > C D 5 R ). )
An element of H%(’C; R(K')) belongs to the subspace Hé(C; R(K'))
if and only if we: can choose its representatives 96,6
R(C N D; Ké, ) suzh- that for any vs.l< e/

G (z) = Fgr (2).
R 1 ~ . .

Proposition 3. HD(C; R(K')) 4is an FS space.

Proof. Put T = {z = x + iy; |yl € n}, F,o=T, N (c \Dl/n)'

= . 1 - . [ : s
Put further Xn Rb(Fn, Kl/n) and Yn Rb(Tn, Kl/n)' Yn is a

closed subspace of a Banach space Xn' Xn and Yn g&re projective

. O\
systems of Banach spaces and we have ﬁ

R(CND; K') = 1im prj Xn’

R(Cy; K') = 1im proj Yn and
1m. s L s X

HD(C, R(K'")) = 1im proj Xn/Yn'

The mapping X — Xn' and Yn+1 —y Yn being compact,

n+1l
Xn+1/Yn+1 —_— Xn/Yn is compact. Hence Hé(C;‘ﬁkK'))

’ is an FS space.

Remark. If R(CND; K') is dense in any of Xn and if
Yn is the completion of R(C; K') in the topology of Xn,
then" H%(C;'E(K')) is equal to H%(C; R(K')). We see,

by a different way, that H%(C;‘E(K')) = Hé(C; R(K')) for

D =R x ikK.

With these terminologies, we can state our theorem.
Theorem 2. Put D = [ x iK. The dual space Q'(D; K') of
Q(D; K') is topologically isomorphic to the space Hé(C;VE(Kj)).
The duality is given by the following inner product:

<, [91> = -'SaD £(2) Qi (2) dz (29)
for £ € Q(D; K') and [Plé€ H%(C; R(K')). In the right

- 11 -



hand of (29) € > 0>

for £ € Q(D; k')

C—A(S' (Dg, ) and
£ and &' such that

¢ 0 and ?ﬁ, is chosen as follows:

we can find & » ( and g/> 0 such that f

the estimate (5) is satisfied. Choose

0¢t<g, and O<e’ <&l . P €

R(C ND; ETE' ) i1s a representative of [f ].

Remark.  If D =D_={ o0} x ilk;, k,J, then the theorem
reduces to the special case of the well known duaiity of

G (v,) eana (c & - (9'(C\D )/ Ge).

_Pi_r_dc_;_f_‘. (i) Suppose first r is a propoerly convex closed
cone, i.e. r‘ = ﬂ. or r.. . If f € Q(D; K'), we can find

eo >O and E:?O

such that f e@(Deo) and that the estimate

(5) is satisfied.

Fix arbitrarily 0<CE<E,

and 0 < £°¢ E.,

By the Cauchy integral formula we have for z&D

Ry+e ) (w-3)
f(z) = b [ T e 7 fn D=Dy (30
2T ave w -2 .
and /
(ki -eH(w-2)
£(z) -—{-—S fude aw for D=D_ (30")
2% Jop, w - g y
_ %
: %z“’i < QDE _.ODQ / &2"'2
| 77777 B oo
d 3 ;// / . ; D—///// £ x
W/ an
(. -&l-s > .& 11
. o B g&
| D"D-’- D= D— o
L _
Ret ,Q € Q'(D; K') be given. Then Qis continuous on
Qb('ﬁ'£ s K""s, ) for-any € O and ¢’ o. T-_herefore,\if' 0 <£‘_< to
‘O <£'< E: and w & C\.ﬁt’ we have

- 12 -
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. €f(z) Q > ’+ ‘
’ £Hw-2> .
B TP Slwyetet? zwﬂ»
ani JoDg , w -2 , "2
= = j f(w) ly(w) dw for D = D (31)
< 1(z), o
£, Ri-g) cw-1
= { —--—-‘ T(W) e w Q >
2L 23D, w-Z ) *B
= - £{w) (w) aw for D =D (31")
| j:va L | =
where We’vput | e—(gz:+€')l.2-—u1')
in'(W) = 2_mc ( z e ) Qz> for D = D+ (32)
and ' ¢
v | e'w“' - £ (2-w) | |
) = , , Qz> for D = D_. (32')
V‘Q 2 2T ¢ 2 -w :
¢+ 1is well defin for any ¢’ 0, because the function
. o cﬁ?-ve')z £z
Z  —)
2 - w . :
belongs to Q(D+;K') for any fixed wéC \D, and the function
. e"c'%\’ - &l>2 ‘
D em——
Z —w

belongs to Q(D_; K') for any fixed wé CSD_.
v .
Now estimate i.Qs_'(w)\. By the continuity of .Q , for
any £€» 0 and €'>O, we can find C20 such that for any

¢ ’ ' ~ :
l(f‘, | < c suD'{lf(z)l ekt E)x 5 zeDE‘k for D = D, (34)
and _ :
. . ) ! ’
[¢r, Lr]g ¢ sup{lf(z)‘ elky-€)x ;s Z€6 De} for D = D . (34")
Suppoée D =‘D+. For wé& C\f)., we have
{l e~c9e1+c‘)2| e(.?h“‘@'/z)x ¢
u .
€ supy_©&xp ( —(%y1x) .
¢ eue | 2 -l '17-%,%.-“%&;%9}

= C dist(w, De, 5t

with some constant C. Therefore, for any € » O there exists

- 13 -
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a constant Ca= C ¢30 such that

v .
[2g ol € Cq o diak (P 4 gthitehu (35)

for any weC \De . In particular we get
2000 € R(CAD; Ky ). . (36)

For D = D_, we can argue similarly and conclude (36)

We investigate now the 2 —dependency of 'Q-!. . We
may suppose D = D+ without loss of general;ty. Let € >4 E.? 0.
Put | o

F(w)

v v
Le' ) - L (w).
Then we have

Flw) ~Chi+ eNE—w) e-(&{ + € (R~
e 3

- | . ~ . Q ?
"21::, < 2 —w | > B
=< eocp(-(&.*-a.uz-w))%cz-w) lg>
where g(z)= ( CXP(-’(o‘- €)2)~ L)/3 is an entire

function of z. We have clearly . ;
sup{\g(z -w)| ; z € DE/:}‘ C{exp(( g - 8,‘ Ju) + 1},
where C is a constant.  Therefore F(w) is an entire function of w
and satisfies the following inequality for any w € C.
\rGo L |
‘ L£cC .exp((ké + E., u), supiexp((ké + 9,1/2)x)‘e_xp(—(ké + €,/)z)
glz - w)l; z & DE/zl'
C' exp((k) + €,)u)'{exp(( g - E. Ju) + 1 }
C'{exp((ké + 5’ yu) + exp((ké + el )u)} .
This means
,Q (w) - Jze,(w) € R(C; K£ ). (47)
Hence { { ‘{’deflnes an element of H (C; R(K')) which we

AN

denote by [E]. [Q] will be called the Cauchy transform

- 14 -
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of €& Q'(D; K'). By the formula(22), the injectivity of the
Cauchy transformation is clear. | |

Let us show its surjectivity. Let [@le H%(c; R(K')).
?ﬁ' denotes the representative of [f‘] belongin.g to R(CND; -IF;: ).
Then _Q(,ﬂ ¢ £ =y {f, [ 917 defines a continuous linear
functional on Q(D; K'); By the definition, we have

| ¢f, "fs:- ( i‘f _)e’> = 0 for any f GQb(B-t ; -K_'-L, ) (38)
Therefore we have only to show that \PG = ‘fsr— ( ng)e' is

an entire function and of exponential type in any horizontal

band R x il with compact,base L. Fix E.’}E’ and put

. ~Chiverw-2) b, ,
ot e W) 4oy
G(2) 2nc 2D, ey : (39)
for z¢ Dg . Let g <& . If z € D¢~ DE‘ we have thanks
to (38) | -l e/yiw-2
ame 9D€';D€, oD,
= 4/‘/(2) + 0. .

Therefore \Pe,, can be'extended to an entire function of

exponential grouth.

(11) ~  Now we study the case | r'“ = R. Up to the end
of this section we put | '

Rx 1K, D, = T4x 1K, D_

D = = T-x 1k, o = [, x ik,
'K = [kl, k2] and K' = [k!, k2].
Lemma 3. - The f‘ollowing sequence 1is exact:

R 4 | |
0 —» Q(D; K') —> Q(D,; K@ Q(D_; K') —> a(D_; K') —> 0, (40)
where, for f € Q(D; K'), hl(f) = (fl, fz), £, (resp.. f2)
being the restriction of f to D_ (resp. to D_); for (f.‘l, f2)
€ Q(D,; X))@ a(p_; K'), hy(fy, f5) = £ - £, .
Proof. We abbreviate the sequence (40) as follows:

0—Qa—q,®Qq —q —> 0. | | (40")
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The exactness at Q results from the unique continuafion ,
property of holomorphic functions. The exactf;ess at the
- middle term is clear by the definition bfk‘thve mappings‘.' _ ;
To show the exactness ‘at Qo’ wev first remark Qo - Q(Do; K') = C9’ (D"O).
Take any f € G(Do), then there exist bounded holomorphic ‘
‘functions f} 6(9'((D+)€) and f;2 GG((D_)s) for -Sofne £>0
such that R | '
exp(ze) £f(z) = £i(z) - £3(z)
in a neighborhoodlof Do' - Putting
fl(z‘) =-exp(—22) fi(‘z) and f2(z) = exp(—zZ) 'fé(z),
we have f, € Q_ and f, é.Q_ such that f = f, - f,. q.e.d.
The exact: sequence of Lemma 3 is composed of DFS spaces.
Therefore, taking the sﬁro’ng dual spaces, we get the exac_f
sequence of FS spaces.
Corollary.. | The/followihg sequence 1is exact,: | | .
04— Q'(D; K') é== Q'(D,; K') @ Q'(D_; K")é—Q'(D_; K') é— 0. (1)
We recall the definition of hj and h): for Le Q'(Do; K')
and (£, £,) €, ®a_, hy(L)(ry, £) = L(ry - 105
ror (4%, 17) €(q,)' @ (@)’ anda £ €a(d; k), nyt L, L))
= o+ L.
Now fiynish the proof of Theorem 2. By Corollary, for ‘
aﬁy lve,Q'(D; K'), there exist ,Q+€ Q'(D+; K') and Q-é- Q' (D_; K')
such that ,Q'=, Q*+ Q'. 'For any E') 0, we put L"= l+$' +)'.;_, .
"I'hen. clearly I,EIC—R(C\ D; I._{—';, ), and Ke/ is determined
uniquely by L € Q'(D; K'). We have also
<r, 8> =<r, [hpD. (42)
Hence the mappin.g y . :
a'(p; k)34 == [ L] €nle; Rk (43)
is inje,ctive’. We call this mapping the Cauchy transf‘o'rmation.
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Now we will prove the surjectivity of the Cauchy
trnasformation (43). Suppose ¢ € R(C “D; K'gs ) satisfies

{f, ¥y = 0 for any f € Q(D; K").

Then put T ma o : :
-(w =2 :
R X e P > =z eD. (1
G(z) ZC J 5D, Tz , 3 ( 3»)»
The function G is holomorphic on Dg and of order 2 on Dg -
biv
Let € >€, >0 and fix z & Dg~ DE(J,( Then x n2
l S ‘ & oy
G(z) = : { : +S dwr
2 179D -37,, :;D.;,3 W -2
= @(z) + 0,

which implies (f can be analytically extended onto DE

and define an entire function. As this entire fUﬁétion P is.
of order finte in any horizontal bands with compéct base,

we cén conclude that @ e R‘(C; ?{-';_z ) by Lemma 1. This
implies the surjectivity of the Cauchy transformatioﬁ as

in the proof of the case (1i). q.e.d.

§5. Fourier transformation of Q'( [ x iK; K').

We restfict oufselves to the case of dimension 1. We
proved in § 1 the (dual) Fourier transformation Eht is a
topological isomorphism of Q'(R x iK; K') onto Q'(R x i(-K'); K).
We give here another definition of the Fourier transformation
of Q'"(R x iK; K'). ‘

Put D = [ x iK. Let ﬂré Q'(D; K') be given.

Z(;) = {exp(-iz §), Lg >
is défined‘for g such that the function z b= exp(-iz S)
~

belongs to Q(D; K'). The function L of { is called the Fourier

transformation of ,Q € Q' (D; K')., If D= D, = 0 x iK,
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‘Qr is an entire function of ; .. Suppose D = D+ (resp. D_).,

As we have
 exp(-128) = exp(-i(x§- yN)) exp(x7+ y§),

the function z k= e‘xipi(-iv_zg) belongé to Q(D+§ K') if NS -ky
(resp. to Q(D_; K') if N> ‘ki)', It is ea’sy‘ to see ‘I(Sv)
is a holomorphic function on {gé c; M= Imlg (“—ké\'(r.eép.
{\;; v -k'll’). If D = Dmv; there is no such ; b‘ut‘we‘ may define
the Fourier tranformation properly as we will see soon léﬁér.'

We first consider the case where D = Do’ D, or D_.
‘ ,.In order to state explicitely the image of Q'(D; K') under the
Fourier transformation, we introduce some neﬁ Spaces bf
"holomorphic functions. |

Let V be a real vector space of dimension n and V'
its dual. For an open set SV inE = v x4V , we denote by
Rexp(.ﬂ,/; K) the space of all holomorphic functions f. on .Q.,
which satisfy the following estimate:

Yeso, Y¢'>0, Fc20 such that

sup{ (£(§)lexp(-(n, (§) + €I§] + €Inl); Ge S_'L/_ezf‘” ¢ )
where _Qf_cv= - 'Ess {ge E'; §‘+ %’ec, S'L.’l- . (Let A and
B be subsets of a vector space X. We put A - B = { x € X;
"X + B C.A}. Remark that A - B # A + (-B) in general.)
We endow Réxp(ﬂ/;_K) with the topology defined by the
seminorm ( ). Rexp(Q,; K) becomesan FS space. It is
clear that Rexp(g‘l; K) is a subspace of R(.Q.l; K) introduced
in §3.

It is well known (Martineau [ J) thé.t the Fourier

transformation establishes a topological isomorphism:
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Q' (Dg; K') ~=> Royp(Cs K.
We study now the case where D = D _(resp. D_). Let —
Le Q'(Dys K') (resp. Q'(D_; K')). As we have seen, L(f)
is defined and holomorphic for ”q_ <k—kév (resp. 'Yl > —ki). .
By the contindity of ﬂ. , for any &> 0 and '€'> O there exists
a constant C3 0 such that ‘ |
. Y] o .
((f,Q?( € C supie(ké vt )x\f(z)l; Z€D¢ &
"~ (resp. ' :
, .
\(f,.ﬁrl € C sup{e(ki - € )Xif(z)l ;'ZGDE})
for any f € Qb(T)-E‘5 k—';: ). Therefore, for any 'rl <"k§ - £'
(resp. ~"] » -k_Z'L +¢’), we have
RSl '
$ C sup{e(ké + 18 )x exp(x 1 + y;) 3 zeDg'& '
$C sup {e(ké te +'fl )x exp(yg); Xy ~€, v € Ks_'k
= C exp(- g (k) + e,+_rl )) exp(hK(E) + Elﬂ )
(resp.
(&5l ) |
$ C sup{e(k'l - € )x exp(x " + yg); zéDe}
! .
§ c sup{e(ki =g+ Ix exp(y< %; x<¢ , yé'Ksk.
/ ; '
= Cexp( & (kj -€ +7)) exp(np(§) + €1§]Ng).
Hence f,'.belongs to Rexp( i; ;ﬁ'l 4 -ké}; K)
(resp. Ry, (1§57 »-ki}s x)).
Let us denote by ™ the dual cone of a cone |" of V.
Namely . _
" | .
T = {EGV' ;(x,'S) £ O for any x € r'}
Remark that ’

Chev, T efy5g T efsrof B - dof
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We have clearly . .
‘r*_ K! = V', n* - K! ='ig ( "_ky'} - K' {g > _k

‘Therefore the Fourier transformation 3' maps Q (D K')

0

into Ry ( " x 1( r'* -‘K ), K) for D = Do', D+; .QI',"D_.

Theorem 3. , Let V be a real vector space o‘f'dimens'ic;i: 1. Suppose
VD =1 x4k =D o? D, or D_. ‘I‘hen the Fourier t‘ransfoffmeticn :

3‘ f gives a topological isomorphism

Qp; k') Rexp (V' x 10 T¥ - k05 0. |

As the case D = Do was treated by A. Martriﬁeau in rhuch

more general situation, we will suppose D = D_ or D_. We
o T=t

construct a mapping of R (vt x i TV= K"); K) into Q'(D; K')

exp
which will be called the Laplace transformation.._

Choose "1 € f’ - K' and put go-, i?, .
SI be the unit vector such that Im §’ = N € r' . (If D = D;,‘
then Mo = -k} - ¢/, 'q’s 0. If D =D_, then Mo ='—kiv+‘£’,
'1‘- 2 0.) It is clear the real half line S’, + _R+§,, lies |
1n V' ox 10 % - K'). et F € Ropp (V' % 10 r* —K')l K)'v[
be given. Put ‘ ,

iz Gy B

- ‘SQ.*-R"Q’ L e

- L2t B+5)
" zw S Ftg'+8)e * ; 5 S 4Lt
where IR it > O‘{ is oriented from O to . As we have

IPCE s ce SV3 FEIM 4 ()
- for S & r‘*—?(";, , we have

|F(t ¥+ £l
Scexp(etl§ |+ elen +Mql+n <1; £
scefl exp(t(e (%) + ng §‘> +el')).
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Therefore if ‘
[} ’ i Iy
-mm a8+ el§ o+ n () + eI <o,
A . . .
the integral F(z; 5, s Q' ) converges absolutely. Put
W (3% =z -z g+ el§ 1+ n(§) vem] <o}
and v
/ ) f /
W8 = 423 - mz¥ (%) <ol
(If D = D,, we may put §’ = -i, 1, or -1 and we have
W(~1i) ={z; x< O}, wW(1) =§_z; ) k2" and W(—l‘) = {z;'y <k1} )
We can easily prove the following three points:
A / 1
1) F(z; So, g-) is holomorphic in W( § ).
A ~ ] 1
2) Flz; 8§, §/) = F23 00,6 tnu(&Hnwcg.
. ~ '
Hence F(z, go, S')'s define a holomorphic function F(z; §°)
€ R(CN\D; K'g, ), where Im §o= -k} -¢'1f D =D, and
- /o - '
Im Qo= -k! + ¢’ if D = D_.
A
3)  Put Fy (2) = F(z; §,).
A ~ 7 !
Then Fes(z) - Fo2(z) € R(C3 XK', ), € > E£0.
£ £ € ¢
. 1 [ ay/ . .
Hence {ng“ﬁ defines an element of HD(C; R(K')) which is
- s
identified with Q'(D; K') by Theorem 2. The mapping F p——> {Fe,k
is said to be the Laplace transformation iL.
| We will show that the Fourier transformation and the
Laplace transformation are inverse to each other. |
Proof of &-}= identity.
Let f%z/]e H%(C; R(K')) and L be the element of Q'(D; K')
. , , .
which corresponds to [?g} Let 0 < €, <¢ . We have
- s
F(§) = L(%)
—hvg
= - e (w) aw
-SaDg , ?E\/ , .
: - /
for %< -ky - €/ (resp. § > -ki + &' ). Ir o= —k',~ ¢

(resp. S, = -kj + &'), we have
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i F<Z3 ;G) S ) ( S = "'1)
| =an - R’ 'F(S)edgol';.
- -SSo—tzh &;5 D tws Cf ’ (W) duwr

T -L @ -w> (Rl e «

?El(w) . 'q.e-dg
Proof of 3' £= identity.

i

We have to show for any F€ R(V' x i('("‘* = K"); K)
~{2
P(Y ) = jw SE Foerae

—

We decompose the right hand side into three integrals

ot |
where I, II and III stand for the following 1ntegration path:
P

AN

T4 ~
B

5 12 (25 1) az
-i2g
s e 5§ R;Fc'c)e “dc
S et? "‘“’S & F(T)dT
_E‘-r-f - - e ﬁ-‘\C’; 1’/(—&(.§~'t)) Ftt)dt

In the same way, we have

,(1 e ¥V L (z;-t5de |
o= i&(?(— L%.(; "C))— %P ("Li;(t-'c»}/(.t(g z‘) F('Z’)At

27[
and c

e~ ¥ E, (2)d2
S'ﬂt F -t22(8-2)

| e

=J—S§o—w ~itg-1) Fleade

Therefore we conclude ‘
-tz28
(T) d= . -
.%-?De ek'ZuC’C-Fg ( e(.?:. (.'; $) |
T I mpe F(e)dz + rm'.j z-¢ F (v)dz.
“w- <
,/ )
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Hence we have
28 ,=5_;D£ e-@; F?g(%)dz‘-—— FCso
for S such that 11( k' - 2( and g # 0. As {,/ is arbitfar‘y,
we have ﬁ:'= F by the ﬁnique continuation property of
holomorphic functions. . ‘ ' ' q.efd.
Now we proceed to the case Q(R'x iK; K'). We have
constructed the exact sequence (39) and the.topological
isomorphisms: | |
Q' (D,; K@ Q' (D_; K') | ' |
-“-’-»‘Rexp({'q < —k;_}; )@ Rexp({ ’I>‘ki} K) = Rgyp(C N-D')5 K)

and

o’ K) = C9(Do)“ E; Rekﬂ(c; Kﬁ?

Hence we have a topological isomorphism, which we name

Q' (D

- the Fourier transformationf.
. . 1 . =R . .
F: (s k') = HIp,(C; Ry, (K)) = R, (CN(-D');5 K)/Ry, (C; K)
such that the diagram
0¢— Q'(D; K') é= Q'(D,; K') @Q'(D_; K') é— Q' (D5 K') &= 0
L ¥ IS br

1 . . .
O ¢— H ) (C3 Ry (K)) &= R, (CN(-D'); K) =R, (C; K) é&=(

X
is commutative.

Theorem 4. Put F = R x iK'. The Fourier transformation 3':
Q'(D; K') > H}D,(C; Rexp(K)) is a topological iso-
morphism and the composed mapping '
\ 1 1 v .
Q'(D; K') —» H_D,(C; Rexp(K)) ] H_D.(C; R(K)) = Q'(-D'; K) -
is equal to the (dual) Fourier transformation:

3'4‘ Q'(D; K') —» Q'(=D'; K).
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Corollary. We have the isomorphism:

ul (c; R (X)) = HE( '?R/(K")) o
. Dt »e'xp, /. T tpe C3 A T

for D' = R'x iK',“
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