ON CLASS NUMBER of a GALOIS EXTENSION

N. NAKAGOSHI

(TOYAMA Univ.)

Let K be a finite Galois extension of an algebraic number field k. The central extension \widehat{K} and the genus field K^* over k are defined in [17,[3]. The central class number $\mathcal{Z}_{K_R} = (\widehat{K} : K)$ and the genus number $\mathcal{Z}_{K_R} = (K^* : K)$ of K with respect to k are given in [1], [3].

Let $\alpha_{\mathbf{k/k}}$ be the ambiguous ideal class number of K respect to k . If K / k is a cyclic extension, or a Galois extension of a prime power degree, we have some relations between the class number $\mathbf{f_k}$ of K and $\alpha_{\mathbf{k/k}}$ ([2],[3],[5]).

In [4], it is proved:

"Let K / k be a cyclic extension of a prime power degree ℓ^{ν} , and suppose K and the absolute class field \overline{k} of k are disjoint over k, i.e. K \cap $\overline{k} = k$. Then h_K is prime to ℓ if and only if $\ell^{\nu}_{KK} = h_K$ and h_K is prime to ℓ ."

We shall generalize this criterion to a Galois extension of a prime power degree. In this note, \hat{k}_{k} and \bar{k} for a finite algebraic number field k mean as above.

<u>PROPOSITION.</u> Let k be an algebraic number field and K / k be a Galois extension of degree \mathcal{N} . Suppose $K \wedge \overline{k} = k$.

- (1) If k_K is prime to $\mathcal N$, then $\mathcal K_K = \mathcal K_K$ and k_K is prime to $\mathcal N$.
- (2) Let $\mathcal{M} = \ell^{\nu}$ be a prime power. Then ℓ_{k} is prime to ℓ if and only if $\ell_{k/k} = g_{k/k} = g_{k/k} = f_{k}$ and f_{k} is prime to ℓ .

Proof. (1) Since $\mathbb{Z}_{K_{k}}=(\hat{k}:K^{*})\cdot\mathbb{J}_{K_{k}}$, $\mathbb{J}_{K_{k}}=(K^{*}:K\cdot\overline{k})\cdot\mathbb{J}_{K_{k}}$, $\mathbb{J}_{K_{k}}=(K^{*}:K\cdot\overline{k})\cdot\mathbb{J}_{K_{k}}$, $\mathbb{J}_{K_{k}}$ and $\mathbb{J}_{K_{k}}$ are divisible by $\mathbb{J}_{K_{k}}$. In the decomposition

$$\frac{f_{K}}{f_{R}} = \frac{g_{K/R}}{f_{R}} \frac{f_{K}}{g_{K/R}} = \frac{z_{K/R}}{f_{R}} \frac{f_{K}}{z_{K/R}}$$

if f_{kk} is prime to n , then $\frac{g_{kk}}{f_{kk}}$, $\frac{z_{kk}}{f_{kk}}$ are prime to n .

From the genus number formula and the central class number formula,

we have

(notations in these formulas are defined in [1], [3]).

$$E_{R} \cap N_{K/R} U_{K} \supset E_{R}^{n} = \{ \varepsilon^{n} = N_{K/R} \varepsilon \mid \varepsilon \in E_{R} \},$$

and it is well-known

where G is a Galois group of K over k and \digamma is the subgroup of TATE cohomology group $H^{-3}(G,Z)$, generated by $I_{\eta j} G_{\eta j} H^{-3}(G_{\eta j},Z)$ for all the infinite and the finite prime divisors γ and its decomposition group $G_{\eta j}$.

Therefore, the prime factors of $\frac{g_{kk}}{h_k}$ and $\frac{\chi_{kk}}{h_k}$ are those of N, also

$$\frac{3k/k}{\hbar k} = \frac{k/k}{\hbar k} = 1; \quad kk/k = 3k/k = \hbar k.$$

Let \mathbf{I}_{K} be the ideal group of K and $\mathbf{P}_{\!\!\!\mathbf{K}}$ be the principal ideal group of K . Then

are the subgroups of $\c{ extstyle T}_{m{\mathsf{K}}}$, and

 $A_nH \subset \{ ole I_K \mid ole P_K \}$.

It follows for the ambiguous ideal class number $a_{K/R}$ of K respect to

where the prime factors of $(A_0H:P_K)$ are also those of $\mathcal N$. If k is prime to k, then k is prime to k, hence

$$(A_0H:P_K)=1; A_0H=P_K$$
.

By $\{K_{K} = K_{K}, K^{*} = K \cdot \overline{k} \text{ is the genus field of } K \text{ over } k, i.e.$ the class field corresponding to H over K. So we have

$$g_{KR} = (K^*:K) = CI_K:H) = (I_K:AH)(AH:H)$$

= $(I_K:AH)(A:AnH) = (I_K:AH) \cdot a_{KR}$.

On the other hand, the number $(\mathcal{K}_{\mathbf{k}_{\mathbf{k}}}^{(0)})$ of ideal classes represented by an ambiguous ideal in K / k is given by [5]:

$$a_{\kappa_{k}}^{(e)} = \frac{h_{k} \cdot T_{q} T_{q}}{|H^{1}(G, E_{k})|}$$
.

If hk is prime to \mathcal{N} , then $Q_{\mathbf{k}/\mathbf{k}}$, $Q_{\mathbf{k}/\mathbf{k}}$ and hk are prime to \mathcal{N} , that is, $Q_{\mathbf{k}/\mathbf{k}}$ = hk . Since $g_{\mathbf{k}/\mathbf{k}}$ = hk = 0 mod $Q_{\mathbf{k}/\mathbf{k}}$, and $Q_{\mathbf{k}/\mathbf{k}}$ = 0 mod $Q_{\mathbf{k}/\mathbf{k}}$, hence $g_{\mathbf{k}/\mathbf{k}}$ = hk = $Q_{\mathbf{k}/\mathbf{k}}$.

References

[1]	Furuta, Y.,	Nagoya Math. J.,	vol.29(1967),	281-285.
[2]		Nagoya Math. J.,	vol.37(1970),	197-200
[3]		J. Number Theory,	vol. 3(1971),	318-322.
[4]	Furuya, H.,	Tohoku Math. J.,	vol.23(1971),	207-218.
[5]	Yokoi, H.,	Nagoya Math. J.,	vol,29(1967),	31-44.
[6]		J. Math. Soc., Japan,	vol.20(1968),	411-418.

12, June, 1973, Kanazawa.