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A Markov process with stochastic time parameter:
the gene frequency change in a geographically-structured

population of finite and fixed total number

TAKEO MARUYAMA*

National Institute of Genetics, Mishima
Abstract

A Markov process (chain) of gene frequency change was derived
for a geographically-structured model of a population of fixed
total size. The population consists of colonies, which are
connected by migration, and mating and selection are done in each
colony independently. It was shown that, if the sum of the
heterozygosity appeared in the population is used as the (stochastic)
time parameter, the process becomes a random walk which is
independent of the geographical structure of the population.

This time parameter is not exact if the mutants are under selection,
but is a close approximation. As a limit of large population

size, a diffusion process was derived. The transition prebabilities
~of the Markov chain and of the diffusion process were obtained
explicitly. Certain quantities of biological interest are shown

to be independent of the population structure. The quantities

are the fixation probability of a mutant, the sum of the number

of heterozygotes for a mutant, and the heterozygosity summed over
the generations in which the gene freduency in the Whole population

assumes a specified value.
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1. Introduction

The stochastic model of gene frequency change in a population
of fixed finite size put forward by Fisher (1930) and Wright (1931
and later) has become increasingly important in population genetics
and evolutionary theory. For reviews, see Moran (1962); Karlin
and McGregor (1964); Kimura (1964); Ewens (1969); Wright (1969);
Crow and Kimura (1970); Cavalli-Sforza and Bodmer (1971); Kimura
and Ohta (1971).

Mnst.of the theory, however, have dealt with random mating
populations, while hardly any natural population meets this
assumption for various reasons. One of them would be the
geographical structure of the population which prevents the random
- mating, and when we take this into consideration the mathematics
.becomes very difficult. Therefore the purposes of the present

study is to develop a Markov process of gene frequency change in
a geographically structured case and investigate its properties.
Throughoﬁt this paper, we consider one locus where two alleles,
A and a, are segregating. The fitnesses of A and a are 1 + s
and 1 respectivély, and the fitnesses are constant in time and
throughout the whole population. No mutation or migration from

outside world occurs during the time under consideration.
2. Derivation of the Markov process.

The population consists of colonies: Migration and/or
reformation of the populatian occur and they are the factors
which connect colonies genetically. Each individual has the

negative exponential 1life timeé distribution with unit mean.
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When an individual dies, it is immediately replaced by a new
individual born in the same colony. This assumption implies that
the total population size is constant. We denote the size}of
the total population by N. Each pre—exiéting individual in the
colony has a chance of being chosen to repfoduce, which is proportional
to that individual's. fitness. This is a geographically-structured
version of Moran's model, (Moran 1958). This stochastic process - -
is not a branching type process. ihe most important biological
limitation of a branching process.is that the fate of each individual
(particle) is independent from others.

Let Nt

be the colony size at time t and let Mt X be the

b4

,k

number of A in colony k at time t. Let Mt = I Mt
k

. Then random
,k

variable Mt is a stochastic p;odesé whose_state'spéce_is (0, 1, 2,
e+, N- 1, N], where N is é fixed integer. This pfocess with
time parameter t is very complicated because of the geographical
structure of the population. Therefore, in‘bélbw; we will introduce
a new time measure which makes the process into a simple Markov
process.

First, note that, in any short time interval, At, two or
more death—birth events occur With.probability of order (At)z.
Théfefore rapdom variéﬁle Mt changes by 6ne at any‘moient. Now
consider a pérticular moment when a birth-death occurs, and ask
what is the probability that the value of Mt changes from i to
i + 1 through this event? Let ik be the value of Mt at this

yk

moment, i. e., i = I i, .
K k

The probability that the death-birth occurs in colony k

whose size is Nt k is Nt k/N’ and given this, the probability,
b

E
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9 i1 that one a in the colony dies and it is replaced by
k> 7k
one A, is

ik(Nt,k - ik)(l + s)

(Nt,k + Slk)

L

s 1

q.
x Nt,k

The probability, q. . s, that one A dies and replaced by one
lk’lk_l
a, is

. LW e~ i)

el Ne oM g +s)

The probability, 9 4 o that no change in the number of A occurs, is
k> 7k

= 1-

q: . q. . -q, . _
lk’lk 1k,1k+l lk’lk 1

Therefore the probability, H(t), that the value of Mt changes

through the death-birth event is

1
H(E) = % DN [q, . 40 ta, . ]
N x t,k 1k,1k+1 1k’lk 1
' s( Tk -l)
1 M - 1) N 2
= = IN 1+ . (2-1)
N 6k N 1+2
t

>,k 2
The H(t) can be defined for all t and independently of death-birth
évents. ~We assume that migration takes place instantaneously
and independentiy of death-birth events. The value of H(t) changes

discontinuously as migration or a death-birth event occurs, and

otherwise the value of H(t) remains constant. For example, assume



that the population consists of two colonies, say 1 and 2, and

that each of the two colonies has two A genes and two a genes

and s = 0. Under this situation, H(t) = (2/8)(4 x 2 x 2/16
+ 4 x 2 x 2/16) = 1/2. Now suppose that one A gene moves
from colony 1 to colony 2, then H(t) = (2/8)(3 x 1 x 2/9 +
5x 3x2/25) = 7/15. 1It is important that the effects of

migration énd of the population structure are incorporated in
H(t). Note that the quantity in the square blacket is the
probability that two randomly chosen gametes from a colony with
replacement are different type. We call this quantity the average
local genetic variation. Therefore, H(t) is equal to the average
local genetic variation if the alleles are selectively neutral,
and otherwise they is approximately equal.

Now ask, if Mt is changed, what is the probability that Mt
is changed from i to i + 1? This conditional probability is

equal to

1

H(t)

= g

IN ,q.. .
Kk t,k 1k,1k+1

Through simple algebraic manuplations, this becomes

Similarly, the conditional probability that Mt is changed from

itoi-1is
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We should note two properties here; (1) these conditional probabilities
are independent .of state i, (2) they are independent of the geographical
structure ‘of -the population.

Consider a short time interval At. - Then the probability of

occurrence of one death-birth event is

~NAL ~+ o(At) O
Let Rt be the probability tfhat,Mt is unchanged for time interval -
t. Then

t+At
R ;,er(i,—‘NAt)A+xRtNAt (}‘— 1 HC&)d%) + o(At)

AL At
The first termon .the ‘right side of the above equation is the’
probability that Mt remains unchanged until time t and no death-
birth occurs in (t, t + At). The second term is the probability‘
that Mt remains unchanged until t and one death-birth occurs in

(t, t + At) but Mt remains unchanged. From this equation we have

dR
1 t :
T = - NH(E)
R at ’
and therefore
t
- NH(g)dg
0
R, = e , . - (2-2)

Consider the stochastic process as a collection of sample paths

{w}, and let
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t
T = T(w, t) E H(w, g)dg (2—3)
0

where w indicates a particular sample path and H(w, &) is the

same quantity as H(E) of (2-1) associated with sample path w.

Consider this T as a new time measure. Let MT be the same

stochastic process as Mt’ except the time is measured by 1. Let

RT be the probability that MT is unchanged for time interval rT.

Then from {(2-2) and (2-3), we have

This process MT is characterized as follows: (1) the state space

is {0, 1, 2, -+, N - 1, N]; (2) the sojourn time at each state

at each visit is exponentially distributed with mean 1/N; (3) ‘the
conditional probability that MT is changed from i to i + 1 is

(L +s)/(2 +s), and the conditional probability that MT is

changed from i to i - 1 is 1/(2 + s). These conditional probabilities
are independent of state and of geographical structure of the
population. Therefore MT is a Poisson type process.

Let g_ . ., be the probability that M_ is i at time 0 and it
T,1,] T

H

is j at time t. Then we have

~NAT -NAT
qT-ATsi,j - c qT)isj td-e )[qu,i—l,j
/qu,i+1,j] + o(a1)
where A = (1 + s8)/(2 + s) and = 1/(2 + s). From this equation,
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we derxrive

d . .
T,31,
_Tei,3 o N[- g

= + -
d ti, V20,5 TR ) > 28

Kolmogorov backward equation. Using the time measure H(t) of
(2-3), equation (2-4) can be derived from Dynkin's formula, (cf.
Dynkin 1965, p.133, formula 5-10). We can derive the Kolmogorov

forward equation similarly:

—gt = Al Ue,i,5 ¥ Mg, gon TR ] (2-5)
These differential eqﬁations characterize the Markov process, and
all the information concerning the process can be obtained from
these equations.
It is remarkable and fortunate that the stochastic time T,

that transforms the originally very complicated process into a
simple random walk, happens to be the sum of heterozygosity which
is a very familiar quantity in genetics. As far as I know, this
is the fifst example of a stochastic time parameter used in biology.

| It is often convenient to express the éystem of the equation

in matrix notation. We define the following matrices:

Q = [q . .]
Tolsd ™ (N-1)x(N-1)
.|
dT - dT
(N-1)x(N-1)



-1 %00 . . . 000
A-1 X 0 .. . . 00 O
0O A-1L M . . . 000
A =
0000 . . . A-LM
o 0 0 0 . . . 0 Xx-1
4 (N-1)x(N-1)
where A = (1 4+ s)/(2 +s) andk = 1/(2 + s). Then the systems
of the differential equations in (2-4) become
dQT
— = - NA 2-7
= q (2-7)
and (2-5) becomes
* H
N (2-8)

%
where A is the transpose of A.
We shall next derive a diffusion process as a limit of large

N. The backward equations (2-4) can be rewritten as

S Y % R § -
dt 2 May s, 24,5 7 qT,i+l,j]
Ns
+ 2(2 + s) [qT,i~l,j qT,i+l,j] : (2-9)
Let T be a new time measure such that NT = 1, and Ns = §
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a constant. Let qN(T,-ﬁ, %) = 4y 5 Then (2-9) can be
b H

written as

_1_1 i-1 3y _ ig
dT . ) 1 2 qN(T, N ) N) qu(Ts N’ N)
v( )
i+ 1 i Ns 1 i-1
N
) i+ 1 .
- qN<Ta = N ° J)

Therefore as N + «, the above difference equation formally

' converges to

aqw(T, X, ¥)

ox

2
aqw(T3 X, Y) 9 qw(Ta Xy Y) S
) 2 )
' X E

L

(2-10)

The derivation of this equation is not mathematically rigorous,
but this can be justified, (cf. Kac 1947). The Markov process
governed by (2-10) is a diffusion process and it is a Brownian
motion. If we let q; = exp(~ Sx/Z)qm(T,,x, y), the gbove
equation becomes

SQL(T, Xy ’1 qu;(T, X, )

oT 2 3x2

I believe that this is the first time in population genetics that
a diffusion process is rigorously derived for a selective case,
régardless the population structure. Karlin and McGregor (1962)

has derived several diffusion processes for a non-selective case

- 10 -



of a random mating population.

3. Applications

We shall investigate biologically interesting quantities.

A standard procedure of dealing with equation (2-7) is to obtain

37

a complete spectral analysis of matrix A. The right eigen vectors

of matrix A are the column vectors

1 3
2( (A2 oMk ADo2mk A2 L 3k
e —J;(()A smN,(M) sin =§ ’(/u.) n s
N-1 *
(ﬁ)N si (N'Nl)“k) Lk = 1,2, ', N-1

where * indicates transpose of a vector. It can be easily shown

that
Aek = Akek
where
A = -1+ 2/A cos —

1 3
dk =—%<(-}>\-A)251n%,(%) s:Ln——IT\;—k‘,(%")Zsina—g-l-{-
N-1
(%) N S1 (N -Nl)ﬁk) ’ k = 13 2: ’

- 11 -

(3-2)
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and it is easy to show

dA = Ny

where the eigenvalues are the same as (3-2). Note that {e }, or

)
{dk}, themselves are not orthogonal system, but'{ek} and.{dk}

are biorthogonal, i. e.,

N-1 i
_ 2 A . dink M4 ,Ame _
(> d)) = % 2 (r) osin == (7)) sin = Sy,
where S 1 and Skg = 0ifk % 3.

With these eigenvectors and eigenvalues, we can easily obtain
the fundamental solution of the process of equation (2-7), that

is the transition probability:

N1 T

2
= I e e ®
T N a1 @ 4

where ® indicates the direct product of two vectors. This can

be written as

; 1 k | igi‘ k jTk
- £ - - 230K cos TE T i 1Tk oo Tk
q'r,i,j X kzl exp N(1 - 2V/AM cos N )T (M) sin =~ sin 1
2
1,22 S
sx - 2(k T A )T
q (T, x, y) = 2 2. 3 e - sin kmx sin kmy
: . k=1

The Markov process governed by qm(T, X, y) is independent of the

geographical structure and it is a Brownian motion.

12 -
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The ultimate fixation probability, s of allele A in the

whole population is given by the solution of equation

Au = 0
h %
where u = (ul, Uy, , uN—l) :
i
l -
L- 1+ s ) l-e o
Yy T 1 N A -sN (3-3)
1-(ggg) L-e

where i is the initial numb;r of A in the whole population. This
is the same as Moran (1959) in which the formula was derived for
a panmictic population. Iherefo;e the fixation probability is
independent of the geographical structure. If we‘replace si and
sN of (3-1) by Sx and S respectively, the right side in (3-3)

is the solution of the differential equation

1%, sap _
2 dXZ 2 dx
with boundary conditions £(0) = 0 and £(1) = 1. The independence

of the fixation probability here was derived under the assumption
of constant size of the total population and local random mating,
but importantly the structure of the population was not assumed

to be fixed. Even if population structure depends on the genetic
constitution, such as genetically similar individuals tend to live
closer, or the structure depends on the gene frequency, the
fixation probability is unaltered. This independence of the

fixation probability was suggested by Maruyama (1970a), based on

- 13 -



an approximation. However it was not clear whether the independence
is exact or approximation.

The first exit time of the process from [1, 2, *°*, N - 1]

is the solution of equation
Af +1 = O

% *
where 1 = (1, 1, ***, 1) and O = (0, O, *°*, 0) . The i-th
entry, fi,'of f is the duration of time, measured by t, until

allele A is fixed in the population or A is lost from the population?

1

a1 ¢ Ay 2 . dmk jTk
e - L Nzl Nzl ( %_) 31n. N sin N
i N2 j=1 k=1 (1 - Zy/)-\}—[ cos W—I}I{— )

The biological meaning of:,fi is the sum of the number of heterozygote
that appeérs‘in the population while the two alleles are segregating,

provided that initially there are i A genes.

The second moment, f§2>, of the first exit time measured by
T is the solution of
af @ for = 0

where f is the mean obtained above and f(z) = (f£2>, féz), ey
fégi). This is the second moment of the sum of the number of

heterozygotes. The higher moments are similarly obtained:

- 14 -
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In the above calculations, we included both kinds of sample
paths in which A is established in the whole population and in
which A is lost. We can make distinction between the two kinds,
and calculate the quantities for those paths in which A is fixed,
(or in which A is lost). Let fi be the mean exit time in the paths

*

in which A is fixed. Then g = (ulfi, u, £} ), is

v e |
2722 s Uy gy

the solution of equation
Ag +u = 0

where u is the vector of the fixation probabilities, ui:

i
N-1 N-1 ( 25‘) 2 u, sin lﬂk-sin dmk

gro= Lo g oy £ 1 L N

o uiN2 j=1 k=1 (1 - 2/3K cos %% )

where uy is the fixation probability given in (3-3). Biologically,
fi is the expectation of the amount of heterozygoéity given that
A is established in the population. A special case of this result
was first given in Maruyama (1971a).

Finally we shall obtain ﬁhe sojourn time at a given state,
or in a given range of gene frequency. Let ¢ij be the sojourn
time, measured by v, at state j while A and a are segregating
in the population, provided the process starts from state i.

Let & = [¢..]. Then

or

- 15 -
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1o
_ A2 . odimk . juk
A ) ;L.Nzl ( ﬁ‘) sin =~ sin ~
+ ¥ k=1 (1 - 2/Mk cos % )
As N becomes large,
-25(N-3) -2si
1 = 1 - i . .
Rl e )<—2Nse : if3>1
s(l - e )
(3-4)
-2s (N~-j) -2si _ . .
1/ -e YL -e ) =28 (i-3)
¢l N - ) (1 - e
3 s Q- e Ns)
if § < i
Ifs = 0
2i (N - 4) s
b1 < if > i
(3-5)
25 (N - 1 . . .
¢ij Y N ) if ] < 1
If we let ¢(x, ¥) = ¢ %3 %~) = ¢ij’ this satisfy the following
differential equétion
1 d2¢(x’ y) + s d2¢v(xs y) +8(x-y) = 0
27 2 27 dx y

where §(*) is the Dirac delta function, (cf. Maruyama 1972a). -
Approximation formulas (3-4) and (3-5) were obtained in

Maruyama (1972b) by an entirely different method, and were used

in Yamazaki and Maruyama (1972) in which an attempt is made to

answer the important question as to whether or not the naturally

- 16 -
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occurring polymorphisms are mainly due to selectively neutral
mutants. See also Crow (1973). These formulas were also used

in Maruyama (1972c¢) in which the consistency between the neutral
hypotheses of molecular evolution and of naturally occurring
polymorphism was shown to hold. It should be emphasized that the
sojourn time measured by the number of generation, the time until
fixation of an allele, the distribution of the gene frequencies
and the rate of decay of genetic variability are influenced by
the population structure.

If the population is at steady situation in which input of
mutants at some loci (or nucleotide sites) is balanced by tﬁe
extinction of genetic variation at other loci, the sum of heterozygosities
at loci having a specified gene frequency, say j/N, is proportional
to ¢lj' Therefore the distribution of heterozygosities is -
independent of the geographical structure. This ié an extension
of Wright (1938) in which the distribution of gene frequencies
was obtained. It is interesting to note that the quantity
independent of the geographical structure is not the gené frequency
distribution but it is the distribution of.heterozygosities.
Extensive investigations on these matters were given in Maruyama
(1969, 1970b, 1970c, 1971b, 197lc, 1971d, 1972d, 1972e, 1972f,

1972g).
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