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Approximation of Exponential Function of a Matrix by

Continued Fraction Expansion

Masatake MORI (Research Institute for Mathematical

Sciences, Kyoto University)

§1 Introduction

The solution of an equation of evolution

'—EF— = Au, u(O) = uO ' (1'1)

in which A is an NxN matrix is formally given

u(t) = etAu0 (1.2)

where the matrix exp tA is defined by
e™ = I+ g7A + AT + L. (1.3)

Such a system of ordinafy differential equation is often

a result of discretization of space variables of a certain
time-dependent linear partial differential equation.:

Varga [1] has shown the relation between various methods_for
numerical solution of parabolic partial differential equations
from the standpoint of the Padé approximation of the
exponential function exp tA, and propoéed newAmethods based

on the higher order approximation of exp tA.
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The purpose of the present paper is to give a method
based on the continued fraction expansion of exp tA, where
A is an NxN matrix, as a device to solve an equation of the
form (1.1). This method may be included in those proposed
by Varga, but it has an advantage that it is reduced to an
iterative method in a simple form owing to the recurrence
relation which gives the continued fraction expansion of
e?. Moreover, as will be shown below, the approximant
‘Hp(2) of e? always satisfies |Hi (z) |<1 in Re z<0 and hence
the resulting method is applicable to a family of non-self
adjoint problems and is unconditionally stable as long as

every eigenvalue of A lies in the left half-plane.

In order to express a continued fraction

of — (1.4)

b0+ . e n °.e . (l-s)
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§2 Continued fraction expansion of e”
It is well known that the exponential function e’ has a

continued fraction expansion

Z Z Z Z Z Z A
e e T A e o - ) ISR CEE)

and that the right hand side of (2.1) converges for any

finite value of z in the complex z-plane. (See e.g. [2,p.348],

[3,p.113].) If we define two sequences {Fk} and {Gk} by
Fy=1, F;=1, Gy=0, G

0 1=1 (2.2)

(3-10F;_1-2F;_5 5 J=2,4,6,...
F.= : (2.3)
j=3,5,7,...

(j-1)Gj_1-sz_2 3 3=2,4,6,...
G.= (2.4)
*265_5 3 3=3,5,7,...

the quotienﬁ
Hn(z) = Gn(z)/Fn(z) (2.5)

is identical to the n-th approximant of (2.1) [2,p.15], and

converges uniformly in any finite domain of z [3,p.112]:

. z
§3m H_ (2) = " . (2.6)
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By contraction [3,p.13] the expansion (2.1) is reduced

to its odd part

eZ = 1 + 2z z2 EE z2 ' (2.7)
2-z + 6 + T0 + """ + 2(25-1) + "°° :

whose sequence of approximants is that of odd approximants
H2k+1(z)=62k+l(2)/F2k+1(z) of (2.1). The approximants

H2k+1 can be generated by the recurrence relation

F1=1, F3=2-z, G1=1, G3=2+z (2.8)
_ . 2. Lo ,

F2j+1—2(23 l)sz_1+z sz_3 ; J=2,3,4,... (2.9)
- . 2 . im

G2j+1—2(23 1)G2j_1+z sz_3 ;- 3=2,3,4,... (2.10)

These odd approximants are found in the diagonal elements

of the Pade table for e’ [4,s.16], and from (2.8) we see

that H2k+1(z) satisfies
H2k+1("2) = T—l—(—j—- (2.11)
2k+1'%

corresponding to e Z=1/e”.
In the similar way, we have the even approximants
Hchz)=G2k(z)/F2k(z) of (2.1) by ;he relation

FO=1, F2=1-?, GO=O, G2=1 (2.12)

: _ : 2 2j-1.2 i
sz—{2(23-1)+77732}F2j_2+7%7§z Faj-q 3 372:3,4,... (2.13)

~ . 2 ' 23-1.2 o
Gyy=12(2 1)+7?7§Z}G2j_2+7%7§z Gpjoq 5 372:3,4,... (2.14)
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When z#0, another expansion can be obtained by
equivalence transformation [2,p.19]. 1f we multiply every

odd terms of (2.1) by s=1/z, we have

+

o) b

1 1 cee s o g=1]
7-gDs + 5 st
: (2.15)

- +

1
- 35 +

(N

1
s

o
il
=

the approximants Hn(Z)=Gn(z)/Pn(z) of which are generated

by the recurrence relation

F.=1, F

0 =1, Gy=0, G

1 1=1 (2.16)

(3-1)sF; _1-F5 5 3 §52,4,6,...
" F.= ' (2.17)
| 2F; *F5 5 5 33,57,

(j-l)st_l-Gj_2 y j=2,4,6,...
G.= (2.18)

265.1%G5_5 5 3%3,5,7,...

The truncation error of the n-th approximant of the
continued fraction (2.1) can be expressed in various forms.

For example, if we write

-

z z z

1 Z z Z z z
& T -T1T+7- 7 T . 7 L (2.19)
T-1+2-3+2 k-1 + 2 - Rypn(y)
and subtract.
-1z z 2z z [z 2z
Hypo1(2) = T _ T 4 2.3 473 - "2 kT + 3 (2.20)

from (2.19), we have for the odd approximant
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Eoxe1(2) = e - Hyp (2]

k 2k+1
- A (-1) 'z (2.21)
P2k+1(z){F2k+1(z)R2k+l(z)—zFZk(z)}
O (2.22)
where
z z z
RZk"‘l(Z) = (2k+1) + 3 - 7K+3 + T - (2.23)
For the even approximant we have
k 2k
- (1) 2 (2.24)
FZk(Z){FZR(Z)RZR(Z)+ZF21{-1(Z)}
= o(z%%y (2.25)
where
= . 2 z Z "
Rok(8) = 2 - 2537 + 7 - 7k¢3 -7 (2.26)

As to the asymptotic behavior for large |z], a difference
is observed between those of H2k+l(z) and HZk(z). When
n is odd, since the polynomials F2k+1(z) and G2k+1(z) are of
the same order'with the equal coefficients at the terms of

the highest order, we have

318 Hyy 0 (2) = 1 (2.27)

so that for any €>0
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l%;g |E2k+1(z)[—1, uniformly in ste<arg zs 7€ . (2.28)

On the other hand, when n is even, FZk(z) is a polynomial

of order 2k and GZk(z) is of order 2k-1, and hence

Hyp(2) = 001/2)  (]z] » =) - (2.29)
so that
Ep() = 001/2) ([z]>*), § < arg z < 3, (2.30)

or for any €>0

‘%;Q ]EZk(z)|=O, uniformly in %+egarg zség—a . (2.31)

As an example for the behavior of the error at
intermediate value of z we show the map of ]En(z)l,n=4 in
Fig.1. The values of ]En(z)l on the negative real axis

for various values of n are also shown in Fig.2. (See p.16.)
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§3 Boundedness and regularity of the approximant in the

left half-plane and on the imaginary axis

In this section we shall prove that the approximant
H_ (z)=G_(z)/F_ (z) is bounded as |H_(z)|<1 in the left
half-plane including the imaginary axis and hence is regular
there. We use the following elementary property of the
fractional linear transformation.

(a) If Re s<0, the transformation

1 .
(Z3-1)s+w

§j=1,2,3,... (3.1)

maps the left hqlf—pléne Re wgl/2 into all 6r,a part

of |t-1]21. In fact, from (3.1) Re[(2j-1)s+w]

=Re[1/t]=(t+t)/(2tT), and since Re s<0 and Re w<l/2, we

have Re[(2j-1)s+w]<1/2 so that (t+t)/(tt)<l or |t-1]>1.
(b) The transformation ’ |

1
2-W

t = (3.2)

maps |w-1|21 onto Re t<l/2. This would be evident

from the relation lsll-w|z=]l/t-1|2={t¥-(t¥$)+l}/(ff).
Lemma If Re st; Hn(z) sétisfies
| (z)] <1 (3.3)

and is regular there.

Proof Since s;l/z maps Re z<0 onto itself, we take the
expansion (2.15) instead of (2.1) and consider the images
of Re sx0. The continued fra;tion expansion (2.15) can
be regarded to be given by composing the following

fractional linear transformations:
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1

wo = Tolvyl = 155 (3.4)
W =T, . [s;w,.] = 1 . 3=1,2,3
2j-1 2j-1"7""2j (27-D)s*w,. 1Ly 0 e
J (3.5)
wo. = T,.[w ] = —_— . §=1,2,3 (3.6)
2j Zj 2j+1 2-W2j+1 » ) 3 bg gy e .

That is, the (2k+1)-th and the 2k-th approximants are

given respectively

Hype1 (2) = TTyT,pe o Ty [0] 5 k=1,2,3, ... (3.7)
CHyp (2) = TTyT,e oo Ty 10550] 5 k=1,2,3,... (3.8)

First we take H2k+1(z) and consider the image of Re s<0 by

- : _ 1
Wok-1 = T2x-1T2kl0) = me s Tz - (3.9)
From (a) we see that (3.9) maps Re s<0 into a part of

Iwy-q - 1l21.  Then from (b)

_ _ 1
ak-2 = Tak-2WWak-1l T w T
maps lek—l - 1|21 into Re ka_zsl/Z. Successive and

alternative use of (a) and (b) leads to lwl—lizl, where

w1=T1[w2]=T1T2-..T2k[0]. Hence from (3.4) we finally
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have

[Hyu (231 = ATgT 2Ty L0 = fwgl = 1/7]1-wy] < 1.

Next we consider H,, (z). In this case Re s<0 is mapped
by

= .01 = 1
Wak-1 © Tax-108301 = mEoos
onto Re w,, <0, and this is entirely included in the
region Ika-l - 1]21. Then from the above proof for
Hyp.1(2), we can immediately conclude that IHZk(z)|$Iw0|
<1. Finally, since Hn(z) is a rational function of z,
‘lHn(z)lsl over Re z<0 implies the regularity of H_(z)

over Re z<0.

.- PLANE

EIGENVALUE OF A

Fig.3. Path C of Dunford integral (4.6)

- 10 -
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§4 High order iterative approximation for exp tA

For the approximation of exp tA where A is an NxN
matrix, we are ready to make use of the recurrence relation
(2.2)-(2.4). The replacement of z by the matrix tA leads
formally to the following iterative procedure for the

approximation of exp tA:

F0=I, F1=I, G0=O, G1=I (I:identity matrix) (4.1
(j-l)Fj_l-tAFj_2 ; j=2,4,6,...
Fj= , (4.2)
2Fj_1+tAFj_2 ; 3=3,5,7,...
(j-l)Gj_l-tAGj_2 ; j=2,4,6,... :
Gj= (4.3)
2Gj_1+tAGj_2 ; 3=3,5,7,...
= g1 £
Hn(tA) = F, (tA)Gn(tA) T exp tA (4.4)
We adopt a certain norm for NxN matrix. ‘Then as to the

convergence of H (tA) to exp tA, we have

Theorem . If every eigenvalue AE of ' a matrix A satisfies
~ Re AQSO, then

230 H_(tA) = exp tA , t20 (4.5)
Proof Since Hn(z) is regular over Re z<0 from Lemma,
En(tk)=exp tk-Hn(tA).is also regular over Re A0 when tx0.

Then the error En(tA)_can be expressed in terms of Dunford

integral [5,p287]:

- 11 -
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E_(tA) = exp tA - H_(tA)
1 [
" HT 9. TR Bp(er) b . (4.6)

The path C of the integral is a simple closed contour
enclosing all of the eigen values Al of A and not enclosing
any singularity of En(tx) as shown in Fig.3. Taking the

norm of»(4.6) we have
IE, (tA) | < f%jéc - e, e ]
5'7% {mgxlEn(tk)I}Jﬁeu(A—A)'lﬂIdA[ . (4.7)

Since A-A is regular along C, the integral ¢ﬂ(x-A)'1n|dx]
along C is bounded, and hence in view of the uniform
convergence of IEn(tA)f to zero as n-+» ags a scalar function
over'any finite domain in the A-plane we have uEn(tA)H;O

as n+», which completes .the proof.

By making use of a vector

g. = Gjuo (4.8)

instead of the matrix Gj itself when calculating (exp tA)uO
’

we can reduce the product between two matrices into that

between a matrix and a vector as follows:

FO—I, Fi=I, g0=0) g1=uy (4.9)

(3-1)F; 1 -tAF;_, 5 §=2,4,6,...
F.= (4.10)

2F; 1 *tAFs 5 5 §=3,5,7,...

j-1 2
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”

i(j-l)gj_l-tAgj_z ; §=2,4,6,...

8;%

5 (4.11)

Zgjfi+tAgj_2 ; 3=3,5,7,...
u(t) = (exp tA)u, 5 Félgn . (4.12)

If A2 is a priori calculated, we have another procedure
from (5.8)-(2.10) that makes, though theoretically, double

the rate of convergence of the above procedure:

F1=I, F3=ZI-tA, g1=uy, g3=2u0+tAu0 (4.13)
F,. .=2(25-1)F,. .+t2A%F . 3=2,3,4 (4.14)
2j+1”444] 2j-1 2j-3 7 ITE0e e :

. 2,2 .
g2j+1=2(23-1)g2j_1+t A g2j-3 ; §J=2,3,4,... (4.15)
- 2 p-1
u(t) = (exp tA)uO = F2k+1g2k+1 . (4.16)

When A"l is obtainable, we may have other procedures by
replacing s by t7 1Al in (2.17) and (2.18), and, if
preferable, by reducing it into contracted forms.

We assume that every eigenvalue Ag of NxN matrix A
lies in the left half-plane, i.e. Re x2<0;2=1,2,...,N.
Then it can easily be seen from the proof of Lemﬁa that the
specfral radius~p of Hn(tA) satisfies p(Hn(tA))<1 for all
t>0, and hence the matrix approximation Hn(tA) under the
above assumption is unconditionally stable for any n [6,p.265].
It would be clear that Hn(tA) is a consistent approximation

to exp tA in the sense of Lax and RiChtheT"[7,p.271].
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&> Discussions

The present method has the advantages of a simple
iterative procedure and of a high order stuble approximation.
It would yield a result with high precision even wheén it
is applied with a fairly large time mesh t owing to the
rapid convergence of the continued fraction expansion, and
hence this situation is considered to recover the disadvantagé
of the method that it requires one matrix product for every
one iteration.

It should be noted, however, that a serious situation
may arise at the actual computation when the maximum tlkM]
of the absolute value of the eigenvalues of the matrix tA
is too large compared with 1 while the minimum 1is less
than 1 as in the case of a parabolic problem with fairly

large t, since then the condition number of

-+ CDREERTEm® 5 ne2k
Fn(tA) = (5.1)
I- .- +(-1)kT%%7T(tA)k ; n=2k+1

[1,p.223]'becomes remarkably large as n is increased to an
appropriate value fo; convergence, resulting in a seriously
large error in the solution FAl(tA)gn. This drawback may
be recovered if. the eigenvalués of A are shifted to the
left by multiplying exp(-ot) (0=|AMI) to exp(tA) so that
the condition number of A-o may be reduced to the order of
nearly unity, but then the convergence would turn out to

be very slow. When A is a diagonal dominant sparse matrix

as is obtained from a parabolic equation, the factorization

- 14 -



112
of F_'(tA) into

-1 1

Frleea) = Cea-u) ThCeAsuy) e (oA (5.2)
willlbe very efficient.

The following procedure will generally be recommended.
Divide t into equal and small n subintervals At, i.e. t=nAt,

and compute Fk(AtA) for fixed value of At to an appropriate

order k. Then, using Fk(AtA), iterate
u(jAt) = B R(AtA)u((j-1)At), j=1,2,...,n (5.3)

with the initial value uy=u(0). This method would be
applicable with slight modifiéation to obtain an approximate

solution of

,%% = A(t)u , (5.4)

where A(t) depends 6n t moderately, if we use the matrix
A(jAt) in the calculation at the subinterval jAt<tg(j+1)At.
The present analysis may be formally extended to the
approximation of exp tA 'in a Banach space X in which A is
such a closed linear operator on X into X that the spectrum
lies in the 1éft half-plane including the imaginary axis and
fhat the Dunford integral representation holds in En(tA).
When A is a bounded operator the extension is immediate.
‘When A is unbounded, however, some additional conditions
must be satisfiéd. For example, such an operator that
"H(A—A)_lu ‘SM([>\|+1)-1 holds for A in the resolvent set
p(A) in a sector ﬂ/2+s§arg A<31/2-€,e>0 comes within this
class of operators, if we use the even approximants HZk(tA)

inlview of (2.30).

- 15 -
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