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reference we reproduce it below after J. Wolf [1C

o Relations conditicas ordexr
m_._n_. . s !
A'=B =1, 21, n21, | mn
-l_,r

—
-
=]
L
]
““"
=

1
n=2"v, v £ 2
-1 .2 -1 k| ’ . !
RAR "=A", RBR ~=B K=-1 (2%,
x?=1 (n)
4L, B As in I ; also As in I ; also gmn
Lo, 2 2 2 .
P Q P =1, P7=Q ={PQ) 7 .},: =1 (2) , |
AP=PA, AQ=0QR, P
EDPB "“Q, BQB-J—:PQ n =0 (3)
As in ; alsc As iu III ; also

in III
»“, RPR ~=QP Ll =1 (n),

n-solvable, it is one of the following

2, p), where p ig a prime = 5, znd ¥ is

- . . . \ 2 .
type I and order prime to [8.(2, »n)! = p(p” - ).
Ls generated by a group of type V and an element &




such that

§° = -1 ¢ SL(2, p), sas™t = a7t

14

SBS © = B, sLs™t = 6(L) (L € SL(2, p)).

Here, SL(2, p) denotes the multiplicative group of 2x2

matrices of determinant 1 with entries in the field Zp, and

6 is an automorphism of SL(2, p) given by
. -1
(l .l) 1 0 0 1 0 w
I O P Gy '
0 1 -w, 1/°7 -1, 0 -w 0

w being a generator of the multiplicative group in Zp.

Let G be any finite group, and p a prime. Then the

p-period of G is defined to be the least positive integer

e

q

such that the Tate cohomology groups gt ; a) ana Y9G ; )

have isomérphic p—primary components for all i and all A.

The period of G is the least common multiple of all the p-

periods. R.G. Swan [7] gave a method to calculate the p-period

as follows:

(1.5) (i) - If a 2-Sylow subgroup of a finite group G . is

cyclic, the 2-period of G is 2. If a 2-Sylow subgroup of G

is a generalized quaternion group, the 2-peirod of G is 4.

(ii) Suppose p 1is odd and a p-Sylow subgroup Gp of

G

is cyclic. Let @p denote the group of automorphisms of GD

induced by inner automorphisms of G. Then the p-period of G

is 2o _|.
—_—1D

If N(Gp), C(Gp) denote the normalizer and centralizer of

-



Gp; it holds 0, = N(Gp)/C(GP). From this we have the following
(see [8]).

(1.6) If a 3-Sylow subgroup of G is cyclic, the 3-period

of G divides 4,

We shall next consider free orthogonal actions on s, 1f

a representation p of a group G is said to be fixed point

free if 1 4 g € G implies that p(g) does not have o+ 1 for
an eigenvalue:

With the notations of (1.4), let d denote the order of r
in the multiplicative group‘of residues modulo m of integers
prime to m. .Modifying the work of G. Vincent [9j, J.Wolf

proves the following (1.7),(1.8) in [10].

(1L.7) For a finite group G, the following two conditions

are equivalent:

i) G has a fixed point free complex representation.

ii) G is of type I, II, III, IV, V for g = 5, or VI for

g = 5, with the ‘additional condition: n/d is divisible by

every prime divisor of d.

(1.8) Let G be a finite group satisfying the conditions

in (1.7). Then each fixed point free, irreducible complex

represehtation of G has the degree 6(G) which is given as

follows:
Type I 11 III | Iv' | IV" v VI
§(e¢) | d | 2a | 2a | 2a | 4a 2d 4d

-

- 2g-1

If |G| > 2, G acts freely and orthogonally on § if and




<
e

only if g is divisible by §8(G).

Here IV' refers to G of type IV such that G = {a, 5%}

x

c* and |G| ¥+ 0 (9), O* being the binary octahedral group ;

IV" refers to G of type IV which is not of type IV'.

v
2. Finite groups acting freely on g? -1

We shall consider the following conditions for a finite

group G:
2V-1
(Av) G can act freely and orthogonally on S .

2V-1

(Bv) G ban,act freely on S

(Cv) G has the cohomology of period 2Y  and has at most

one element of order 2.

(AV)=§ (Bv) is trivial, and (BV)=%?(CV)«/holds by {1.2)
and (1.3). We shall study whether (Cv5‘¢ (Av) holds.

Let G be a finite group satisfying (CV). Then, by (1.3)
and (1.4), G is of type I, II, III, IV, V or VI. We shall

retain the notations in § 1.

Case 1l: m ¥ 1.

Since it folloWs from the conditions of type I that m is
odd, there is an odd primé p such that m = pcm', (m', p) = 1.
Put A' = Am', then . A' generates a cyclic group of order pc.

If we observe the order of G, it follows that this cyclic group

is a p-Sylow subgroup of G. Since
i ri .
BA'B =Al (l=0,l’..',d-l)

are distinct, it follows from (1.5) that the period of G 1is a
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multiple of 2d. Therefore 2¥ is a multiple of 2d, and so 4
is a divisor of 2V, since m =1 is equivalent to d = 1,
we have

d

2% with o = 1,2,¢°, v - 1.

Since n is a multiple of d, n is even. Therefore G can

not be of type III, IV, V or VI. If G 4is of type II and d

=20L

with & 2 2, the conditions on k yield a contradiction.
Thus G is of'type I with & =2% (a =1,2,°*+, v = 1), or of
type II with d = 2. v

Since the order 6f Bn/2 is 2, by (1.1) we have

Bn/ZAB-n/Z = AL

since BAB T = aF, we have also
_ n/2
Bn/2AB n/2 _ af .
n/z ' : G 4o 2 o - I ¢ L.
Hence <~ = 1(m), and n/2 is a multiple of d = 27, This

shows that n/d is divisible by every prime divisor of 4.
Therefqre it follows from (1.7) and (1.8) that G has a fixed
point free complex representation whose degree is 2% if ¢
‘is ofvtype I with d = 20, and 4 if G is of type II with 4
= 2. Thus if v 2 3, G acts freely and orthogonally on s2V-1
If v = 2; so does G of type I with & = 2. However (1.8)
shows that G of type’II with d = 2 can not act freely aﬁd

orthogonally on 83.

Case 2: m= 1, G is solvable.

In this case we have d = 1. Therefore it follows from

(1.7) and (1.8) that G has a fixed point free complex represen-
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tation whose degree is 1 if G is of type I, 2 if G is of

W

type II,III or IV', and 4 if G is of type IV". Thus if v

2V-1

3, G acts freely and orthogonally on S If v =2, so

does G of type I,II,III or IV'. However (1.8) shows that G

of type IV" can not act freely and orthogonally on 83.

Case 3: m =1, G is non-solvable.

For
/11
X =( 1 ) € SL(2, p)
0 1
we have
i 1 i '

0 1
Therefore X generates a cyclic group of degree p. If we
observe the order of G} it follows that this cyclic group is
a p-Sylow subgroup of G. For

i

w-, 0 0 -0t
Y.=( ), z.=( . )
R R R

1 1 w21
Y.XY." = ( ’
i1
1 w21+1

zisxs'l.z".’l‘ = ( ) i
. 0o 1

Therefore it follows from (1.5) that 2V is a multiple of

we have

p-1 if G 1is of type V, and that ZV is a multiple of
2(p=- 1) if G is of type VI. Thus G is of the following

type V; (2 f£asv) or VI; (2 2£asv-=-1.
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V;. G = zn>< SL(2, p), where p is a prime of the form

+ 1, and (n, p(p2 - 1)) 1.

N

VI&. G is generated by a group of type V; and an element

S satisfying the conditions in VI.

In particular, if v ='2, G 1is of type V§ and it acts
freely and orthogonally on 83 by (1.7) and (1.8). If v = 3,

G is of type Vg or VI§, and it acts freely and orthogonally on

s’ by (1.7) and (1.8). If v =4, G is of type V%, Vi or VIj.
The groups of type V§ or VI§ acts freely and orthogonally on
15

8”7, but (1.7) shows that the groups of type VZ can not do so.

Remark 1. A prime of the form 2% + 1 is called the Fermat
number, and o is known to be of a power ZB. But. the converse
ié not true; for example 232 + 1 1is divisible by 641;

Summing up the above arguments, we have proved the following

two theorems.

) and the

(2.1) Theorem. The conditions (A;), (Bj), (C,

following condition (D3) are mutually equivalent for any finite

rou G.

o

(D,) G is of type I with d =.2 (o = 0, 1, 2), type II

3

® (=0, 1), type IIT with d = 1, type IV with 4 =

with d = 2

type V with d = 1, or type VI with d = 1.

(2.2) Theorem. For v 2 3, the conditions (Av)’ Lgv), igv)

and the following condition (D;) are mutually equivalent for any

finite solvable group G.

(DG) G is of type I with d = 2% (0 £ o < V), type IT with
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0, 1), type III with 4 = l, or type IV with d = 1.

For v = 4 we have also

(2.3) Theorem. The following two conditions:for a finite

group G are eguivalent:

i) G satisfies the condition (C4) but does not satisfy (A4)-

ii) G 1s of type VZ.

e

Proof. It ﬁaé been proved in the arguments above that i)
implies ii) and the groﬁps of type VZ do not satisfy (A4). It is
easily seen that the groﬁps of type Vz has only ohe element of
order 2. Therefore it remains to prove‘that the groups of type VZ
have period l6.

1f uxt t = xb with U € sn(2, p), then it is easy to see
that 1 1is an éven power df w. Therefore it follows that the
p-period of SL(2, p) is (p - 1). By (1.5) and (1.6), the 2-and
3-period of G divide 4. Since |SL(2, 17)] = 2°-3%.17, it holds
that the period of SL(2, 17) is 16. Thus we have the desired
result, and the proof completes.

Here is a problem: Can the groups of type VZ act freely on
Sls?

For v = 2 .we have

(2.4) Theorem. The following two conditions for a finite

group G are eguivalent:

i) G satisfies the condition (C2) but does not satisfy (A.,).

m— —

ii) G is of type II with d = 2 or type IV" with d = 1.

Proof. It has been proved that i) implies ii) and the groups

of ii) do not satisfy (Az).
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Let G be of type II with 4 = 2, and we shall prove that

It

G satisfies (C,). It follows that r £ =1 (m) and

BIa's™) = a .
Therefore we have
o ; (o1 3y o
(AlBj)Z = At =123 ‘
. . iy
(RAlBj)Z = A1(£+( 1) )Bj(k+l)+n/2
for any 1, j. These show that if a*Bl is of order 2 then
i20 (m) and 3 = 0, n/2 (n), and that RA'BJ is not of order
2. Thus G has only‘one element Bn/2 of order 2. Since the
2-Sylow subgroups of G are generalized guaternionic, the 2-period
cf G is 4, Let p be an odd prime dividing mn. If p divides

1)
m, Al generates a p-Sylow subgroup of G, where m = pcm', (m', p)

. ‘
= 1. If p divides n, B" generates a p-Sylow subgroup of G,
where n = pcn', (n', p) = 1. "It follows that '

v ' — 3 ]
A m ,

o s e
B/a™ B7J = rpda®'3TIR7L = AT,

AiBn‘A—i - Bn" RAiBn'A—iR—l - Bin'.
Therefore we see thap the p-period of G divides 4. Thus the
period of G 1is 4.

- Next, let G be of type IV" with d = 1. It is easy-to see
phat G has only one element of or&er 2. Since the 2-Sylow
subgroups of G are generalized quaternionic, the 2-period of
G is 4. If p ié an odd prime dividing n, then Bnl ~generates
a p-Sylow subgroup of G, whe;e n = pcn', (n', p) = 1. If p % 3,
we have n' = 0 (3) and it follows that

v 1 [ ' [ +n"
p'p7t = 8%, 8" g7t = B*', re?'R7Y = BYP.

Therefore we see that the p-period of G divides 4 if p # 3.

10
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By (1.6) the same holds also for p = 3. Thus the period of G

is 4. = This completes the proof of (2.4).

Remark 2. If we use the notations in J. Milnor ([3], it
follows that the groups of type II with d = 2 are the products

Z, X Q(8g, s, t) with (h, 2gst) =1, s > t ;‘l, and the groups

of type IV" with d = 1 are the products Zh X PZ8f with f
odd 2 3 and (h, 6f) = 1. In fact, BT, {a, pk"D/2 5y
%772, 5, o, R} generate z,, Q(8g, s, t), Py, respective-

ly, where h = (k -1)/2, g=(k + 1)/4, £ = (k + 1)/3 and

0 <k < n., Thus (2.4) is nothing but Theorem 3 of [3]. It is

known that Zh X Q{8yg, s, t) for g even and Zh X P48f with
.f not a power of 3 can not act freely on spheres of dimension

= 3 (8) (see [2], [4]). Here is a problem : Can the groups
Zh>( Q(8g, s, t) with g odd and PZ8-39 -act freely on 83?
o s 2p-1
3. Finite groups acting freely on S
Let Zq be the metacyclic group with presentation (X,
Yy ; x% = ¥P = 1, YXY-l = XG}, where g is an odd integer, p
a prime, (6 - 1, g) =1, and o0 1is a primitive pth root of

1 mod q.

By the arguments similar to § 2 but simpler, we have

(3.1) Theorem. Let p be an odd prime. Then the follow-

ing two conditions for a finite group G are equivalent:

i) G has cohomology of period 2p, has at most one element

g2p-1,

of degree 2, and can not act freely and orthogonally on

11



.. . 7. X 2 , ; - 1.
;;) G 1is of type . qip with  (h, pg) 1

Remark. It is known by T. Petrie [5] that Zq p can act

14
freely on SZP_l if p 4is an odd prime. Here is a problem :

If p 4is an odd prime and h # 1, can the groups Zh X Zé D
& , ,
~act freely on SZP-l?

12
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