FINITE GROUPS WHICH ACT FREELY ON SPHERES

Minoru Nakaoka

We will study the problem: Let G be a finite group which acts freely (and topologically) on the sphere s^{2t-1} . Can G act freely and orthogonally on s^{2t-1} ?

The result of T. Petrie [5] shows that the answer is no for t odd prime. The problem for t=2 is unsolved at present (see [2],[3],[4]). In this note it will be shown that the answer is yes for t=4, and also for $t=2^{V}$ ($v\ge 3$) if G is solvable.

- 1. Preliminary theorems
- By J. Milnor [3] we have
- (1.1) If G is a group which acts freely on S^n , then G satisfies the following conditions which are equivalent:
 - i) Any element of order 2 in G belongs to the center of G.
 - ii) G has at most one element of order 2.

The following (1.2) and (1.3) are shown in [1].

- (1.2) If G acts freely on S^n , the cohomology of G has period n+1.
 - (1.3) The following two conditions are equivalent:
 - i) A finite group G has periodic cohomology.
 - ii) Every abelian subgroup of G is cyclic.
- A complete classification of finite groups satisfying the condition ii) of (1.3) is known by H. Zassenhaus [11] and M. Suzuki [6].

For future reference we reproduce it below after J. Wolf [10] and C.B. Thomas-C.T.C. Wall [8].

(1.4) Let G be a finite group satisfying the condition
ii) of (1.3). If G is solvable, it is one of the following groups:

Туре	Generators	Relations	conditions	order
I	А, В	$A^{m}=B^{n}=1$, $BAB^{-1}=A^{r}$	$m \ge 1, n \ge 1,$ $(n(r-1), m) = 1,$ $r^n \ge 1 (m)$	mn
II	A, B, R	As in I also $R^{2} = B^{n/2},$ $RAR^{-1} = A^{\ell}, RBR^{-1} = B^{k}$	As in I; also $\ell^2 = r^{k-1} = 1 \text{ (m)},$ $n=2^{u}v, u \ge 2,$ $k = -1 \text{ (2}^{u}),$ $k^2 = 1 \text{ (n)}$	2mn
III	A, B, P, Q	As in I; also $P^4=1$, $P^2=Q^2=(PQ)^2$, $AP=PA$, $AQ=QA$, $BPB^{-1}=Q$, $BQB^{-1}=PQ$	As in I; also n = 1 (2); n = 0 (3)	8mn
IV	A, B, P, Q, R	As in III; also $R^2=P^2$, $RPR^{-1}=QP$ $RQR^{-1}=Q^{-1}$, $RAR^{-1}=A^L$, $RBR^{-1}=B^k$	As in III; also $k^{2} \equiv 1 \text{ (n)},$ $k \equiv -1 \text{ (3)},$ $r^{k-1} \equiv \ell^{2} \equiv 1 \text{ (m)}$	16mn

If G is non-solvable, it is one of the following groups.

V. $G = K \times SL(2, p)$, where p is a prime ≥ 5 , and K is a group of type I and order prime to $\{SL(2, p)\} = p(p^2 - 1)$.

VI. G is generated by a group of type V and an element S

such that

$$S^2 = -1 \in SL(2, p), SAS^{-1} = A^{-1},$$

 $SBS^{-1} = B, SLS^{-1} = \theta(L) (L \in SL(2, p)).$

Here, SL(2, p) denotes the multiplicative group of 2×2 matrices of determinant 1 with entries in the field Z_p , and θ is an automorphism of SL(2, p) given by

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 \\ -\omega, & 1 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 \\ -1, & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 0 & \omega^{-1} \\ -\omega & 0 \end{pmatrix},$$

 ω being a generator of the multiplicative group in Z_p .

Let G be any finite group, and p a prime. Then the p-period of G is defined to be the least positive integer q such that the Tate cohomology groups $\hat{H}^i(G; A)$ and $\hat{H}^{i+q}(G; A)$ have isomorphic p-primary components for all i and all A. The period of G is the least common multiple of all the p-periods. R.G. Swan [7] gave a method to calculate the p-period as follows:

- (1.5) (i) If a 2-Sylow subgroup of a finite group G is cyclic, the 2-period of G is 2. If a 2-Sylow subgroup of G is a generalized quaternion group, the 2-peirod of G is 4.
- (ii) Suppose p is odd and a p-Sylow subgroup G_p of G is cyclic. Let Φ_p denote the group of automorphisms of G_p induced by inner automorphisms of G. Then the p-period of G is $2/\Phi_p$.
 - If $N(G_p)$, $C(G_p)$ denote the normalizer and centralizer of

 G_p , it holds $\Phi_p \cong N(G_p)/C(G_p)$. From this we have the following (see [8]).

(1.6) If a 3-Sylow subgroup of G is cyclic, the 3-period of G divides 4.

We shall next consider free orthogonal actions on S^n . If a representation ρ of a group G is said to be <u>fixed point</u> <u>free</u> if $1 \neq g \in G$ implies that $\rho(g)$ does not have +1 for an eigenvalue.

With the notations of (1.4), let d denote the order of r in the multiplicative group of residues modulo m of integers prime to m. Modifying the work of G. Vincent [9], J.Wolf proves the following (1.7), (1.8) in [10].

- (1.7) For a finite group G, the following two conditions are equivalent:
 - i) G has a fixed point free complex representation.
- ii) G is of type I, II, III, IV, V for q = 5, or VI for q = 5, with the additional condition: n/d is divisible by every prime divisor of d.
- (1.8) Let G be a finite group satisfying the conditions in (1.7). Then each fixed point free, irreducible complex representation of G has the degree δ (G) which is given as follows:

Туре	I	II	III	īV'	IV"	v	VI
δ (G) ¦	đ '	2d	2d	2d	4d	2d	4d

If |G| > 2, G acts freely and orthogonally on s^{2q-1} if and

only if q is divisible by $\delta(G)$.

Here IV' refers to G of type IV such that $G = \{A, B^3\} \times O^*$ and $|G| \neq 0$ (9), O* being the binary octahedral group; IV" refers to G of type IV which is not of type IV'.

2. Finite groups acting freely on $s^{2^{\nu}-1}$

We shall consider the following conditions for a finite group G:

- (A_{ν}) G can act freely and orthogonally on $S^{2^{\nu}-1}$.
- (B_{ν}) <u>G</u> can act freely on $s^{2^{\nu}-1}$.
- (C_{ν}) G has the cohomology of period 2^{ν} and has at most one element of order 2.

Let G be a finite group satisfying (C_{v}) . Then, by (1.3) and (1.4), G is of type I, II, III, IV, V or VI. We shall retain the notations in § 1.

Case 1: $m \neq 1$.

Since it follows from the conditions of type I that m is odd, there is an odd prime p such that $m = p^C m'$, (m', p) = 1. Put $A' = A^{m'}$, then A' generates a cyclic group of order p^C . If we observe the order of G, it follows that this cyclic group is a p-Sylow subgroup of G. Since

$$B^{i}A'B^{-i} = A'^{ri}$$
 (i = 0,1,..., d - 1)

are distinct, it follows from (1.5) that the period of G is a

multiple of 2d. Therefore 2^{ν} is a multiple of 2d, and so d is a divisor of $2^{\nu-1}$. Since m=1 is equivalent to d=1, we have

$$d = 2^{\alpha}$$
 with $\alpha = 1, 2, \dots, \nu - 1$.

Since n is a multiple of d, n is even. Therefore G can not be of type III, IV, V or VI. If G is of type II and d = 2^{α} with $\alpha \ge 2$, the conditions on k yield a contradiction. Thus G is of type I with $d = 2^{\alpha}$ ($\alpha = 1, 2, \dots, \nu - 1$), or of type II with d = 2.

Since the order of $B^{n/2}$ is 2, by (1.1) we have $B^{n/2}AB^{-n/2} = A$

Since $BAB^{-1} = A^r$, we have also

$$B^{n/2}AB^{-n/2} = A^{n/2}$$

Hence $r^{n/2} \equiv 1$ (m), and n/2 is a multiple of $d=2^{\alpha}$. This shows that n/d is divisible by every prime divisor of d. Therefore it follows from (1.7) and (1.8) that G has a fixed point free complex representation whose degree is 2^{α} if G is of type I with $d=2^{\alpha}$, and 4 if G is of type II with $d=2^{\alpha}$. Thus if $\nu \geq 3$, G acts freely and orthogonally on $s^{2^{\nu-1}}$. If $\nu = 2$, so does G of type I with d=2. However (1.8) shows that G of type II with d=2 can not act freely and orthogonally on s^3 .

Case 2: m = 1, G is solvable.

In this case we have d = 1. Therefore it follows from (1.7) and (1.8) that G has a fixed point free complex represen-

tation whose degree is 1 if G is of type I, 2 if G is of type II, III or IV', and 4 if G is of type IV". Thus if $\nu \ge 3$, G acts freely and orthogonally on $S^{2^{\nu}-1}$. If $\nu = 2$, so does G of type I, II, III or IV'. However (1.8) shows that G of type IV" can not act freely and orthogonally on S^3 .

Case 3: m = 1, G is non-solvable.

For

$$X = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in SL(2, p)$$

we have

$$X^{i} = \begin{pmatrix} 1 & i \\ 0 & 1 \end{pmatrix} \qquad (i = 0, 1, \dots, p-1).$$

Therefore X generates a cyclic group of degree p. If we observe the order of G, it follows that this cyclic group is a p-Sylow subgroup of G. For

$$Y_{i} = \begin{pmatrix} \omega^{i}, & 0 \\ 0, & \omega^{-i} \end{pmatrix}$$
, $Z_{i} = \begin{pmatrix} 0 & -\omega^{i} \\ \omega^{-i} & 0 \end{pmatrix}$

we have

$$Y_{i}XY_{i}^{-1} = \begin{pmatrix} 1 & \omega^{2i} \\ 0 & 1 \end{pmatrix},$$

$$Z_{i}SXS^{-1}Z_{i}^{-1} = \begin{pmatrix} 1 & \omega^{2i+1} \\ 0 & 1 \end{pmatrix}.$$

Therefore it follows from (1.5) that 2^{V} is a multiple of p-1 if G is of type V, and that 2^{V} is a multiple of 2(p-1) if G is of type VI. Thus G is of the following type V_{α}^{*} $(2 \le \alpha \le \nu)$ or VI_{α}^{*} $(2 \le \alpha \le \nu - 1)$.

 V_{α}^{\star} . $G = Z_{n} \times SL(2, p)$, where p is a prime of the form $2^{\alpha} + 1$, and $(n, p(p^{2} - 1)) = 1$.

VI*. G is generated by a group of type V* and an element S satisfying the conditions in VI.

In particular, if $\nu=2$, G is of type V_2^* and it acts freely and orthogonally on S^3 by (1.7) and (1.8). If $\nu=3$, G is of type V_2^* or VI_2^* , and it acts freely and orthogonally on S^7 by (1.7) and (1.8). If $\nu=4$, G is of type V_2^* , V_4^* or VI_2^* . The groups of type V_2^* or VI_2^* acts freely and orthogonally on S^{15} , but (1.7) shows that the groups of type V_4^* can not do so.

Remark 1. A prime of the form $2^{\alpha}+1$ is called the <u>Fermat number</u>, and α is known to be of a power 2^{β} . But the converse is not true; for example $2^{32}+1$ is divisible by 641.

Summing up the above arguments, we have proved the following two theorems.

- (2.1) Theorem. The conditions (A_3) , (B_3) , (C_3) and the following condition (D_3) are mutually equivalent for any finite group G.
- (D₃) G is of type I with $d = 2^{\alpha}$ ($\alpha = 0, 1, 2$), type II
 with $d = 2^{\alpha}$ ($\alpha = 0, 1$), type III with d = 1, type IV with d = 1,
 type V with d = 1, or type VI with d = 1.
- (2.2) Theorem. For $v \ge 3$, the conditions $(A_{\underline{v}})$, $(B_{\underline{v}})$, $(C_{\underline{v}})$ and the following condition $(D_{\underline{v}})$ are mutually equivalent for any finite solvable group G.
 - (D_{ν}^{*}) G is of type I with $d=2^{\alpha}$ (0 $\leq \alpha < \nu$), type II with

- $d = 2^{\alpha}$ ($\alpha = 0$, 1), type III with d = 1, or type IV with d = 1. For $\nu = 4$ we have also
- (2.3) Theorem. The following two conditions for a finite group G are equivalent:
 - i) G satisfies the condition (C_4) but does not satisfy (A_4) .
 - ii) G is of type V_4^* .

Proof. It has been proved in the arguments above that i) implies ii) and the groups of type V_4^* do not satisfy (A_4) . It is easily seen that the groups of type V_4^* has only one element of order 2. Therefore it remains to prove that the groups of type V_4^* have period 16.

If $UXU^{-1} = X^{1}$ with $U \in SL(2, p)$, then it is easy to see that i is an even power of ω . Therefore it follows that the p-period of SL(2, p) is (p-1). By (1.5) and (1.6), the 2-and 3-period of G divide 4. Since $|SL(2, 17)| = 2^{5} \cdot 3^{2} \cdot 17$, it holds that the period of SL(2, 17) is 16. Thus we have the desired result, and the proof completes.

Here is a problem: Can the groups of type V_4^* act freely on S^{15} ?

For v = 2 we have

- (2.4) Theorem. The following two conditions for a finite group G are equivalent:
 - i) G satisfies the condition (C_2) but does not satisfy (A_2).
 - ii) G is of type II with d = 2 or type IV" with d = 1.

Proof. It has been proved that i) implies ii) and the groups of ii) do not satisfy (A_2) .

Let G be of type II with d=2, and we shall prove that G satisfies (C₂). It follows that $r\equiv -1$ (m) and

$$B^{j}A^{i}B^{-j} = A^{(-1)^{j}i}$$

Therefore we have

$$(A^{i}B^{j})^{2} = A^{i(1+(-1)^{j})}B^{2j},$$

 $(RA^{i}B^{j})^{2} = A^{i(l+(-1)^{i})}B^{j(k+1)+n/2}$

for any i, j. These show that if A^iB^j is of order 2 then $i \equiv 0$ (m) and $j \equiv 0$, n/2 (n), and that RA^iB^j is not of order 2. Thus G has only one element $B^{n/2}$ of order 2. Since the 2-Sylow subgroups of G are generalized quaternionic, the 2-period of G is 4. Let p be an odd prime dividing mn. If p divides m, A^m^i generates a p-Sylow subgroup of G, where $m = p^Cm^i$, $(m^i, p) = 1$. If p divides n, B^n^i generates a p-Sylow subgroup of G, where $m = p^Cn^i$, $(m^i, p) = 1$. It follows that

$$B^{j}A^{m'}B^{-j} = A^{(-1)}{}^{j}m', RB^{j}A^{m'}B^{-j}R^{-1} = A^{\pm m'},$$

 $A^{i}B^{n'}A^{-i} = B^{n'}, RA^{i}B^{n'}A^{-i}R^{-1} = B^{\pm n'}.$

Therefore we see that the p-period of G divides 4. Thus the period of G is 4.

Next, let G be of type IV" with d = 1. It is easy to see that G has only one element of order 2. Since the 2-Sylow subgroups of G are generalized quaternionic, the 2-period of G is 4. If p is an odd prime dividing n, then B^{n} generates a p-Sylow subgroup of G, where $n = p^{C}n'$, (n', p) = 1. If $p \ddagger 3$, we have $n' \equiv 0$ (3) and it follows that

$$PB^{n'}P^{-1} = B^{n'}, QB^{n'}Q^{-1} = B^{n'}, RB^{n'}R^{-1} = B^{\pm n'}.$$

Therefore we see that the p-period of G divides 4 if $p \neq 3$.

By (1.6) the same holds also for p = 3. Thus the period of G is 4. This completes the proof of (2.4).

Remark 2. If we use the notations in J. Milnor [3], it follows that the groups of type II with d=2 are the products $Z_h \times Q(8g, s, t)$ with (h, 2gst) = 1, $s > t \ge 1$, and the groups of type IV" with d=1 are the products $Z_h \times P_{48f}^u$ with f odd ≥ 3 and (h, 6f) = 1. In fact, B^{k+1} , $\{A, B^{(k-1)/2}, R\}$, $\{B^{(k-1)/2}, P, Q, R\}$ generate Z_h , Q(8g, s, t), P_{48f}^u respectively, where h = (k-1)/2, g = (k+1)/4, f = (k+1)/3 and 0 < k < n. Thus (2.4) is nothing but Theorem 3 of [3]. It is known that $Z_h \times Q(8g, s, t)$ for g even and $Z_h \times P_{48f}^u$ with f not a power of 3 can not act freely on spheres of dimension = 3 (8) (see [2], [4]). Here is a problem: Can the groups $Z_h \times Q(8g, s, t)$ with g odd and $P_{48.3e}^u$ act freely on s^3 ?

3. Finite groups acting freely on S^{2p-1}

Let $Z_{q,p}$ be the metacyclic group with presentation (X, Y; $X^q = Y^p = 1$, $YXY^{-1} = X^{\sigma}$), where q is an odd integer, p a prime, $(\sigma - 1, q) = 1$, and σ is a primitive p^{th} root of 1 mod q.

By the arguments similar to § 2 but simpler, we have

- ing two conditions for a finite group G are equivalent:
- i) G has cohomology of period 2p, has at most one element of degree 2, and can not act freely and orthogonally on s^{2p-1} .

ii) G is of type $Z_h \times Z_{q,p}$ with (h, pq) = 1.

Remark. It is known by T. Petrie [5] that $Z_{q,p}$ can act freely on S^{2p-1} if p is an odd prime. Here is a problem : If p is an odd prime and $h \neq 1$, can the groups $Z_h \times Z_{q,p}$ act freely on S^{2p-1} ?

References

- [1] H. Cartan and S. Eilenberg: Homological algebra, Princeton, 1956.
- [2] R. Lee: Semicharacteristic classes, Topology 12 (1973), 183-199.
- [3] J. Milnor: Groups which act on Sⁿ without fixed points, Amer. J. Math. 79 (1957), 623-630.
- [4] M. Nakaoka: Continuous maps of manifolds with involution I, Osaka J. Math. (to appear)
- [5] T. Petrie: Free metacyclic group actions on homotopy spheres, Ann. of Math. 94 (1971), 108-124.
- [6] M. Suzuki: On finite groups with cyclic Sylow subgroups for all odd primes, Amer. J. Math. 77 (1955), 657-691.
- [7] R.G. Swan: The p-period of a finite group, Ill. J. Math. 4 (1960), 341-346.
- [8] C.B. Thomas and C.T.C. Wall: The topological spherical space form problem I, Compositio Math. 23 (1971), 101-114.
- [9] G. Vincent: Les groupes linéaires finis san points fixes, Comment. Math. Helv., 20 (1947), 117-171.
- [10] J. Wolf: Spaces of constant curvature, McGraw-Hill, New-York (1967).
- [11] H. Zassenhaus: Über endliche Fastkörper, Adh. Math. Semi. Univ. Hamburg, 11 (1936), 187-220.