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Symmetry of the Wave functions
Takeyuki HIDA

§0. Introductibn
The infinite dimensional unitary group has been introduced in

connéction with the complex white noise (see [1]). Roughly speaking,
" it is isomorphic to the group of all linear transformationsof the
space of generalized functions such that fhe measure V of the
complex white noise is kept invariant under tﬁem. In my previous
paper [2], I have féund an interesting subgroup, call it now ,Go’
which is genérafed by the shift and the Fourier—Mehlef transform

(the Fourief transform of fractional order) ; this'group G0 itself
is a six-dimensional Lie group. Then, I have been able to see that
the groﬁp G0 describes'séveral important properties of the complex
white noise or theseof tﬁe complex Brownian motion (see [3]). While,
I have enjoyed the discussion with W. Miller Jr. to have found that

the group G is igemorphic to the symmetry group of the heat

0

equation and to give an interpretation telling why they are so.
The report of this result will be published soon.
In this short report, I shall discuss the symmetry of the solution
space G of the Schrodinger equation ’
g Y i .
¢)) ik Fralie Hy , H : Hamiltonian operator,
where the collection of the initial states are taken to be the

(complek) Schwartz space x%. If a tranformation in G. is applied

0

‘to an initial state, then we are given the associated transformation
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on & which carries a wave function to another wave function. 1In
this manner, we can form a transformation group éO' acting on G
which is isomorphic to the group GO' Indeed, éO turns out to be

the symmetry group of the wave functions in some particular cases

where the Hamiltonian is simple (and is typical as well).

§1. Complex white noise and unitrary group UCJL)

Let E be a nuclear space, which is densely included in Lz(Rl),
such that
2.1 ,
EcL (R7) c E*, E* the dual space of E.

The real white noise is the probability measure (E*,yu 2) where the
5 v

characteristic functional C(g) of is given by

2

10’

ta?

-= g

. ‘ , >

S e1<x’£>du 2(x) =e , £ eE,
_E¥ o 2 1

In the above expression | | stands for the L (R")-norm and <x,&>,

@) c(g)

xe E*; £ eE, is the canonical bilinear form which connects E* and E.

Complekifications of E and E* can be done in a usuél manner,
call them Ec and Ez. Members in Ec and E: are denoted by
r=¢+in, £, n ¢ E, and z = x + iy, i,y e E*, respectively. We
extend <X,E> to

<z,8> = (<X,&> + <y,n>) + i(-<x,n> + gy,€>),

through which EZ becomes the dual space of Ec.

We are now ready to introduce the measure of the complex white
noise :

NS

2 |
,v) is called the complex white noise.

O * N

The measure space (E
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Let U(Ec) be the collectioh of all linear transfqrmations g

on EC satisfying the following two conditions :

i) g 1is a homeomorphism of Ec’

ii) }[g;| =]c] for every ¢ ¢ Ec. |
With the usual product (glgz); = gl(gzg), U(Ec) becomes a group.
We can also topologize U(Ec), for instance, by the»v-topology or
by the compact-open topology, so that U(Ec) becomes a topological
group, This topological group U(Ec) is called the infinite

‘dimensional unitary group or simply the unitary group.

"Theorem 1. For any g U(Ec), the adjoint g* 1is a measure-preserving

transformation on (E;,v).

Consider the heat equation
. 2
3 13 : 1
(3 ' S?V(x’t) iy v(x,t), Xe R, te [0,0).
X

.- To obtain.the symmetries of the equation (3) we proteed as follows.

Set

2

3

. 2 »
X

2
ot

1
@ 0= -3
3

and let é be the vector space of differential operators L of
the‘form
(5) | L=X§—X—+T§—t-+p
‘satisfying the following two conditions :
i) X, T and U are analytic in both x and t,
ii) QLv = 0 whenever Qv = 0.

Now, three propositions are in order.

Proposition 1. An operator L belongs to if and only if L

g @

3
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satisfies the commutation relation

(6) L, Q] = R(x,0)Q,

where R is an analytic function of x and t depending only on L.

Proposition 2. The vector space é forms a Lie algebra with the

product [,].

Proposition 3. The collection

S = [ L ;L R, j =1, 2,¢e0
(7) G {exp OtlLl €Xp OLn h’ j € g; OLj € s ) s , n}

forms a local Lie group.

Definition. The group T given by (7) is called the symmetry group
of Q.

Theorem 2,. (Miller [4]). The Lie algebra é is six-dimensional,

o

and a basis of é is given by

I (identity), 'L _ =

(8)
3 ) 23 2
= t=—+ x, L = tx% + t & t)/2.
Tax 2 ax | st (x+t)/

We now come to a description illustrating how our unitary group
contributes to the symmetry group of the heat equation.

Let G be the collection of the functions v given by

oc

V(X,t;(:) = S ;(u)é(t,x—u)du, [ )fc;

=00

(9) v

Hl

where g(t,x) is the Gauss kernel. Obviously, E; is a subspace of the
solution space. In addition, since the mapping T of the space )JL :
T :g(u) — v(x,tio), e d
is a bijection, G can bg topologized so as to be isomorphic to J%f
For a one-parameter subgroup {gt} of U(JL) we are given the
associated one-parameter group {ét} acting on & in such a way that

(10) étv(x,t;c) = vix,tig0).

4
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In what follows we shall restrict our attention to the six
one-parameter subgroups of G0 which generate respective

one-parameter subgroups listed below.

1) gauge transform It :

To) = ez ().

2) shift St :

Stc(U) g(u - t).

3) multiplication T,
A itu
m o) = e r(u).

4} dilation (tension) Ty : 1
-t

t, 2
T,0() = g(ueje .

5) Fourier-Mehler transform 3%:

Sf‘e;(u) =S Ké(u,\r)z(v} dv,

00

where . 1

2ie

L, 2 2 .
EYCAAD) ¥ iuv
2tan ¢ sin ¢

K @) = {r(1 - e ) 2 expl- 1.

Their infinitesimal generators can easily be obtained :

one-parameter subgroup generator
I ‘ il
t
- d/du =
St /du A\
an T iu = in
‘ SRR
Tt du 2 ¢
1 2

i(d%/du- w? 4 1) = if

G
D
[}
[\®]

There can naturally be introduced a generator o = %—[r,f] so that
we are given a Lie-algebra.

Now we can speak of the generators of {ét} which come from the

5
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group G via the expression (10), Simple computations prove that

0
for {gt} c G0 the infinitesimal generator

d_.~ “Té-
dt ®t|t =0 = dt ®t|t =0

exists and we have
T

I ————— I (acting on 6)

4 —->—-§—
9X
T & —t — + X
9X
(12) R L
T ——————f—+ 2t 5E-+ X 5;—+ E
2 3 "y 1.2
f —_ > (tT-1 il tx ot 2(x + ? -1
. P 3 1.2
g — (t+ 1) Pvs + tx 5w + 2(x + t) _

Proposition 4. The algebra generated by the differential operators

in (12) is the same as g in TheoremZ.

§3. Heat equation in higher dimensional spaces.

In order to generalize the results in the last section we shall
first present somewhat different observation of the algebra é.

Since the space G is topologized so as to be isomorphic to
AL via T, there is a one-to-one correspondence between a curve
{vs} in & and a curve {Cs} in _dl. Given a smooth curve {cs}
in 4 with z_ = ¢ we have the infinitesimal transformation o

c 0 ;

in such a way that dc = ag-cs|5=0. For such an o there correqunds
an infinitesimal transformation L :
(13) L = Toq,

We are now able to state our requirements for the set A of the a's.

a) each L = Tea, a ¢ A, is of the form (5) satisfying i) and ii),

6
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b) the generator f of {5(6} is a member of A,
c) A forms a Lie algebré.

With these assumptions we can prove

Proposition 5. The maximal algebra generated by the L = Tod, a e A

“'satisfying the requirements a), b) and c) coincides with the Lie

algebra g.

Having had such an illustration we are now in a position to
»discuss the symmetry group of the heat equation in the n-dimensional
Euclidean space Rn. The-only thing we should note in such a
generalization ié that the generator f should be feplaced by

' © 2
1 "o 2

1 -= B )
(14) > ~Z (; > uj + 1)
= j=1 3u,
Consider the heatJequation
3 : 1 n '32
(15) 5"t'V(X,t) = EAV(X.vt): A = .Z -'2_ y X (xl’ xzo" » X ).
. j=1 axj

Again we restrict our attention to the subspace G of the solution
space‘to the equation (15) which is obtained in 'a similar manner to

T wusing (9) h

"2 ; 1 . 2. . mn
(16) r — v(x,tig) = (2rt) gn t(u) exp[-5—|x-uf ] du”
. . . N n
where ¢ 1is in the complex Schwartz space .ALCR ).

Let L be defined as in . (5)
17) Lot ox 2 a1l .y
k=1 k axk R
satisfying

i) Xk, T and U are analytic in both x and t,
ii) QLv = 0 whenever Qv = 0,
where Q is the operator given by

Q= B.

N |+

d
at



The Lie algebra formed by such L's will be denoted by the same

symbol

1 ¢

Theorem 3. i) The algebra is isomorphic to the algebra g

Q¢

formed by the o with the restrictions (20)}

ii) The dimension of the symmetry group of Q is n(n+3)/2 + 4.

§4. Symmetries of wave functions for free particle.-

In this section we shall discuss the symmetry group of the wave

functions for a free particle. The Schrodinger equation is now of

the form :

: 13y 1
(18) TRt

@

and the Green's function K is gixen by

2 i 2
19) K(t, x - u) = (2mit) exp[EEﬁlx -uj 1.
Here we are, as usual, assuming that m =1, and h = 1. In what
follows we shall deal only with the one-dimensional case. The idea
together with the technique is exactly the same as in the case of
the heat equation. Far from that, the space _Jl, being a subspace
of the complex LZ(Rl), is fitting to ekpress the initial states

for a particle.

We still keep up the algebra g and use the ekpression

vextin) = (| cKee, x - wdn, © e,
' R
similar to (9). The collection of such y's is denoted by 6;. The

operator o ¢ g turns into an operator acting on ‘G' via the bijection

T : JL 3 L) ——— Y(x,t30) e G.

We list the correspondence below (see (12)).



138

b—
90X
3
T —it = + X
(20)
—_— 2t + X i, ]
K ot ax | 2
iy i e o it -2,
f— 3t TR '
o — L itio %E"' itx %;+ (x + it)/2.

Theorem 4. The symmetry group of & for a one-dimensional free

particle is a six-dimensional Lie group and a basis of the associated

Lie algebra is given by (20).
We should like to note that siight modification enables us to

discuss the symmetry of a free particle in a constant external field F.

Finally we shall discuss the symmetry of a simple harmonic

oscillator which is governed by the equation

) L 5 2
13 i3 W
(21) T "2 vo- XY,
: X _

The Green's function K can be expressed as

| 1

' et < 2 - dw 2 2

(22) K(t,x,u) = (w/2ri sin wt)  exp[r—— (x +u )cos wt-2xul].

2sin wt

As before we obtain the following correspondence.

T
I —_— T
. . . ) a
4 —— > L, = - (iwx sin wt + cos wt 5;3
- , sin wt 23
b1 _ L =Z xcos wt +i—m™—m——
T o w ax
.2, 2 1
T —_—t—— L = iwx sin 2wt + cos wt - >

3 sin 2wt 9
——~+—-—————o~-—

+ X cos 2wt
X 3 At

; 9



i3
_— L 2 A
f 2 ot
2 i .
o ————— L = x cos 2yt + — sin 2ut
o 2w
i cos 2yt 3 . ix sin 24t 3
2 ot w ox
w
Set
2 2
Q_ié_+l§_.. _w__XZ
T st 2 272 '
3X

Then we have, as is expected (see the commutation relation (6)).

@ Ll=0, [ L]=o,
[Q.L]=2 cos‘2wt <0,

[Q. L1 =0, |

o Lé] _2i sin 20t o

We also note that we can generalize the result not only to higher
dimensional cases but also to a case where a harmonic os€illator is
‘driven by a constant external field. Furthermore, if one observes

the Green's function of the SchrSdinger equation for a charged particle

in a constant external magnetic field in RS, one might ﬁave hopes
to get the’symmetry group in a similar but somewhat complicated manner.
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