On certain L²-well posed mixed problems for hyperbolic system of first order

by

Taira SHIROTA

Department of Mathematics Hokkaido University

1. Introduction and Theorem.

Let P be a x₀-strictly hyperbolic 2p × 2p-system of differential operators of first order defined over a C^∞ -cylinder $R^1 \times \Omega \subset R^{n+1}$. Let B be a p × 2p-system of functions defined on the boundary Γ of $R^1 \times \Omega$. We consider the following mixed problems under certain conditions:

$$P(x, D)u = f \quad x \in \mathbb{R}^{1} \times \Omega \quad (x_{0} > 0),$$

$$B(x) u = g \quad x \in \Gamma \quad (x_{0} > 0),$$

$$u = h \quad \text{on } x_{0} = 0$$
where $\sqrt{-1} D = (\frac{\partial}{\partial x_{0}}, \frac{\partial}{\partial x_{1}}, \dots, \frac{\partial}{\partial x_{n}})$.

For the sake of simplicity of descriptions, we may only consider the case where $\Omega = \{x_n > 0\}$, by the localization process. Then our assumptions are the following:

- β) For P, it satisfies the # condition with respect to Γ and for fixed (x, τ , σ) there is at most one real double real

root λ of |P| $(x, \tau, \sigma, \lambda) = 0$ where $x \in \Gamma$. Furthermore it is non-characteristic with respect to Γ and it is normal, i.e.

$$|P|(x, 0, \sigma, \lambda) \neq 0$$

for any real $(\sigma, \lambda) \neq 0$

- γ) The p row-vectors of B(x) are linearly independent, where $x \in \Gamma$.
- ([]). α) If the Lopatinsky determinant $R(x_0, \tau_0, \sigma_0) = 0$ for a real point (x_0, τ_0, σ_0) such that there is no real double roots λ of $|P|(x_0, \tau_0, \sigma_0, \lambda) = 0$, then

$$|R(x_0, \tau_0 - i\gamma, \sigma_0)| \ge O(\gamma^1) (\gamma > 0)$$
.

Furthermore if there is at least one real simple root $\lambda\ (x_0,\ \tau_0,\ \sigma_0)\ ,\ \text{the zero set of }R(x,\tau\ \pm\ i\gamma\ ,\ \sigma\)\ \text{in some}$ neighbourhood $U(x_0,\ \tau_0,\ \sigma_0)$ is in the set $\{\gamma=0\ \}$.

β) If $R(x_0, \tau_0, \sigma_0) = 0$ for a real point (x_0, τ_0, σ_0) such that there are real double roots λ of

$$|P|(x_0, \tau_0, \sigma_0, \lambda) = 0$$
, then
$$|R(x_0, \tau_0 - i\gamma, \sigma_0)| \ge O(\gamma^{\frac{1}{2}}) \quad (\gamma > 0)$$
.

Furthermore if there is at least one real simple root λ , the rank of the Hessian of R(x, τ , σ) at its zeros in some $U(x_0, \tau_0, \sigma_0)$ is equal to

codim. of $\{R(x, \tau, \sigma) = 0\}$ in R^{2n} .

Where the zero set of $R(x, \tau, \sigma)$ in some $U(x_0, \tau_0, \sigma_0)$ is preassumed to be a regular submanifold of R^{2n} .

 γ) Moreover, if there is at least one non-real root λ of $|P|(x_0, \tau_0, \sigma_0, \lambda) = 0$ for the point (x_0, τ_0, σ_0) which satisfies the condition β), then for some smooth and non-singular matrix $S(x, \tau-i\gamma, \sigma)$ with $\gamma \geq 0$ defined on some $U(x_0, \tau_0, \sigma_0)$ the corresponding reflection coefficient $b_{III}(x, \tau, \sigma)$ is real whenever τ is real and $R(x, \tau, \sigma) \neq 0$ (For definitions, see §2). (II). Any constant coefficients problems frozen the coefficient at boundary are L^2 -well posed.

Then we have the following

Theorem. Under assumptions (I), (\mathbb{I}), (\mathbb{I}), the mixed problem is L^2 -well posed.

The aim of the present note is to describe the outline of our proof of the above assertion. Here we use essentially the conception of reflection coefficients ([1], [2]) and modifying Kreiss' consideration [4] we make use of the localization of the characterization for L^2 -well posed mixed problem of order two. ([1], [3] and [7])

2. The outline of the proof.

Considering the assumption (I) let $S(x, \tau-i\gamma, \sigma)$ ($\gamma \ge 0$) be a smooth, non-singular matrix defined on some neighbourhood $U(x_0, \tau_0, \sigma_0)$ such that

$$S^{-1}PS = ED_n - A(x, \tau-i\gamma, \sigma)$$

where

$$A = \begin{pmatrix} \lambda_{I}^{+} & & & & & \\ & \lambda_{I}^{-} & & & & \\ & & A_{II} & & & \\ & & & A_{II}^{+} & & \\ & & & & A_{II}^{-} \end{pmatrix},$$

$$\lambda_{I}^{\pm} = (\hat{\lambda}_{i}^{\pm}, \hat{\lambda}_{i}, |I| = r,$$

 λ_1^{\pm} are real, and Im λ_1^{+} (Im λ_1^{-}) > 0 (< 0) respectively if γ > 0. Next for $\tau_0 = \tau_0(x, \sigma)$

$$A_{II}(x, \tau_0, \sigma) = \begin{pmatrix} a(x, 0, \sigma) & 1 \\ 0 & a(x, 0, \sigma) \end{pmatrix}.$$

Here we may restrict ourself to the case where the eigenvalue of $A_{\rm I\!I}(x,\,\tau,\,\sigma)$ are described by the following form in some $U(x_0,\,\tau_0,\,\sigma_0)$

$$\lambda_{xx}^{\pm} = a(x, \zeta, \sigma) \mp \sqrt{\zeta}b(x, \zeta, \sigma) \qquad (\sqrt{1} = 1),$$

 $a(x, \zeta, \sigma)$, $b(x, \zeta, \sigma)$ are real when ζ is real, $b(x, \zeta, \sigma) \neq 0$, $\tau_0 = \tau_0(x_0, \sigma_0), \ \tau = \zeta + \tau_0(x, \sigma) \text{ and } \tau_0(x, \sigma) \text{ is real and positive.}$

Furthermore $A_{I\!I\!I}^{\pm}$ have only non-real eigenvalues for any $\gamma \geq 0$ and the ones of $A_{I\!I\!I}^{+}$ have positive imaginary parts.

Let BS' =
$$(V_{I}^{+}, V_{I}^{-}, V_{II}^{+}, V_{II}^{+}, V_{II}^{+}, V_{II}^{-})$$
.

Where V_{I}^{\pm} are $(p \times r)$ -matrices, V_{II}^{t} , V_{II}^{t} are p-vectors and V_{II}^{\pm} are $(p \times s)$ -matrices respectively (2r+2+2s=2p).

Let
$$S_{II} = \begin{pmatrix} 1 & 0 \\ \frac{\lambda_{II}^{+} - h_{11} \zeta - a}{1 + h_{12} \zeta} & 1 \end{pmatrix}$$
, $a = a(x, 0, \phi)$

and let

$$S' = \begin{pmatrix} E_{2r}, & & \\ & S_{II}, & \\ & & E_{2s}, \end{pmatrix},$$

where h_{ij} are the functions derived from $A_{II}(x, -i\gamma, \sigma)$. Furthermore we denote B.S.S' by

$$(V_{\text{T}}^{+}, V_{\text{T}}^{-}, V_{\text{H}}^{+}, V_{\text{M}}^{-}, V_{\text{M}}^{+}, V_{\text{M}}^{-}) (x, \tau, \sigma).$$

Then from our assumptions we obtain the following Lemmas. In particular from (I). γ), (I). α) and (I), we see the following

Lemma 2. 1 If for real (x_0, τ_0, σ_0) there exist no real double roots λ , then there is a neighbourhood $U(x_0, \tau_0, \sigma_0)$ where

i) For some $V_{3,i}^-$ the determinant $|v_1^+, v_{31}^+, \dots, v_{3,i-1}^+, v_{3,i}^-, v_{3,i+1}^+, \dots, v_{3,s}^+| \neq 0$ where $v_{II}^+ = (v_{3,1}^+, \dots, v_{3,s}^-)$, $s = p - \gamma$, $v_{3,i}^+$ are p-column vectors v_{iI}^- (Here after let i = 1).

- ii) For some $V_{3,1}^{\dagger}$ it belongs to the linear subspace $L(V_{3,2}^{\dagger}, \dots, V_{3,s}^{\dagger})$ spanned by the vectors $V_{3,2}^{\dagger}, \dots, V_{3,s}^{\dagger}$.
- iii) The column vectors of $V_{\mathbf{I}}^{-}$ belong to $L(V_{\mathbf{I}}^{+}, V_{3,2}^{+}, \cdots, V_{3,s}^{+})$. But ii) and iii) are only valid at the points $\in U(x_{0}, \tau_{0}, \sigma_{0})$ such that the Lopatinsky det. $|V_{\mathbf{I}}^{+}, V_{\mathbf{I}}^{+}|$ $(x, \tau, \sigma) = c(\tau \tau(x, \sigma))$ = 0 $(c \neq 0)$ and where $\tau(x, \sigma)$ is real whenever $V_{\mathbf{I}}^{+}$ present.

From (Π) . β) we see the following

Lemma 2. 2 Let (x_0, τ_0, σ_0) be a real point such that there exists a real double root λ . Let $|V_{\rm I}^+, V_{\rm II}^+, V_{\rm II}^+|$ (x_0, ζ, σ_0) = 0, where we consider ζ as a new variable instead of τ . Then

- i) r = 0.
- ii) Let $\zeta^{\frac{1}{2}} = \eta$, then $|V_{I}^{+}, V_{II}^{+}, V_{II}^{+}| = C(\eta \eta(x, \sigma))$ (c \neq 0)

in some $U(x_0, \tau_0, \sigma_0)$, where $\eta(x, \sigma)$ may take complete values.

Under the assumption of Lemma 2. 2 we see the following Lemmas.

Lemma 2. 3 i) The reflection coefficient

$$b_{\Pi \Pi}(x_0, -i\gamma, \sigma_0) = \frac{|v_{\perp}^+, v_{\parallel}^-, v_{\parallel}^+|}{|v_{\perp}^+, v_{\parallel}^+, v_{\parallel}^+|} \quad (x_0, -i\gamma, \sigma_0)$$
$$= o(\gamma^{-\frac{1}{2}}) \qquad (\gamma > 0).$$

11) Let
$$Q(x, \zeta, \sigma)$$
 be $\frac{a_{11} + a_{12}b_{II}}{a_{12} + a_{22}b_{II}}$, then

it is
$$\frac{|V_{\perp}^{+}, V_{\parallel}^{+}, V_{\parallel}^{+}|}{|V_{\perp}^{+}, V_{\parallel}^{+}, V_{\parallel}^{+}|}$$
, where $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = S_{\parallel}^{-1}$.

Now from Lemma 2. 3 and ($\overline{\blacksquare}$) we obtain the following Lemma 2. 4

1)
$$|V_{I}^{+}, V_{II}^{"}, V_{II}^{+}| \neq 0.$$

ii)
$$V_{\overline{H}} \in L(V_{\overline{H}})$$
 on $\zeta = \eta(x, \sigma) = 0$.

iii)
$$V_T^- \in L(V_T^+, V_{\overline{H}}^+)$$
 on $\zeta = \eta(x, \sigma) = 0$.

iv)
$$V_{\overline{I}}^{\bullet} - QV_{\overline{I}}^{\bullet} \in L(V_{\overline{I}}^{+}, V_{\overline{I}}^{+}).$$

From (II). β), γ), (II) and the definition of Q we see the following

Lemma 2. 5 i) The above defined $Q(x, \zeta, \sigma)$ take only real values, when ζ is real.

ii) $\zeta = 0$, $Q(x, 0, \sigma) = 0$ are equivalent to $R(x, \zeta, \sigma) = 0$ for Im $\zeta \leq 0$.

iii)
$$-Q(x, 0, \sigma) \ge 0$$
.

From Lemma 2. 4 we obtain the following

Lemma 2.6 For (x, ζ, σ) belonging to some $U(x_0, \tau_0, \sigma_0)$,

$$g = (V_{I}^{+}, V_{II}^{-}, V_{II}^{+}) \begin{pmatrix} U_{I}^{+} + (\zeta K_{II}^{\prime} + K_{III}^{-}) U_{I}^{+} + K_{II} U_{I}^{-} \\ U_{II}^{+} + QU_{II}^{+} + (\zeta K_{III}^{+} + K_{III}^{-}) U_{I}^{-} \\ U_{II}^{+} + K_{III} U_{I}^{-} + K_{III} U_{I}^{-} \end{pmatrix}$$

$$+ V_{II}^{-} \begin{pmatrix} U_{II}^{-} \\ U_{II}^{-} \end{pmatrix},$$

where $u = (U_{\underline{I}}^+, U_{\underline{I}}^-, U_{\underline{I}}^+, U_{\underline{I}}^-, U_{\underline{I}}^+, U_{\underline{I}}^-)$.

Moreover the components of $K_{\underline{I}\underline{I}}^n$ and $K_{\underline{I}\underline{I}}^n$ are zero, whenever $\zeta = 0$ and $\eta(x, \sigma) = 0$.

From Lemma 2. 1 we obtain an a priori L^2 -estimate in the case where there is no double root λ . On the other hand if there is at least one double root λ , we see from Lemma 2. 5 and by some modifications of Kreiss' method that the problem $((D_n-A_I)u=f, u''+Qu'=g)$ has an a priori estimate

$$||(D_n - A_{\mathbb{I}})u||_{0,\Upsilon} + \langle g \rangle_{\frac{1}{2},\Upsilon} \ge C\gamma ||u||_{0,\Upsilon} \qquad (C > 0)$$

where supp $u \in U(x_0)$, spectrum of u with respect to $x_0, \dots, x_{n-1} \subset U(\tau_0, \sigma_0)$. Then from the method of the proof of the above estimate and from Lemma 2. 6, we obtain a similar estimate in this case. Here we use the fact that the components k of K_{II}^{\bullet} , K_{II}^{\bullet} has the following form: in some $U(x_0, \tau_0, \sigma_0)$

$$k(x, \zeta, \sigma) = \tilde{k}(x, 0, \sigma) + \zeta \tilde{k}(x, 0, \sigma) + O(|\zeta|^2),$$

 $|\tilde{k}(x, 0, \sigma)|^2 \le K|Q(x, 0, \sigma)| \qquad (K > 0)$

which follows from the last assumption of (\mathbb{I}), (β). Furthermore our assumptions are valid for the dual problem and hence \bigwedge_{α}

priori estimate for that problem is also obtained. Thus our proof is complete ([6]).

- Remark (1) The conditions (I), (II), (II) are invariant for certain coordinate transformation. Hence Theorem is applicable for problems defined on any smooth $\mathbb{R}^1 \times \Omega$.
- (2) The condition (\mathbb{I}) , γ) should be omitted, but we have many examples which satisfy the condition.

References

- [1] R. Agemi and T. Shirota: On necessary and sufficient conditions for L²-well-posedness of mixed problems for hyperbolic equations, Jour. Fac. Sci. Hokkaido Univ., Ser. I, Vol. 21, 133-151 (1970)
- [2] R. Agemi and T. Shirota: On necessary and sufficient conditions for L²-well-posedness of mixed problems for hyperbolic equations II, ibid, Vol. 22, 137-149 (1972)
- [3] R. Agemi: On energy inequalities of mixed problems for hyperbolic equations of second order, Jour. Fac. Sci. Hokkaido Univ., Ser. I, Vol. 21, 221-236 (1971)
- [4] H. O. Kreiss: Initial-boundary value problems for hyperbolic systems, Comm. Pure Appl. Math., Vol. 23, 277-298 (1970)
- [5] R. Agemi: Iterated mixed problems for d'Alembertian (to appear)
- [6] K. Kubota: Ramarks on boundary value problems for hyperbolic equations, to appear
- [7] T. Shirota: On the propagation speed of hyperbolic operator with mixed boundary conditions, Jour. Fac. Sci., Hokkaido Univ., Ser. I, Vol. 22, 25-31 (1972)