156

Stratification of proper real analytic mappings and

structural stability of a family of real analytic sets.

FUKUDA Takuo

0. Introduction.

Abstractly what we call the problem of stability can be expressed as follows: We consider an equivalence relation \sim between objects (or morphisms) of some category. Let $\{E_a\}$, a ϵ A, be a family of objects (or morphisms) of this category, the parameter space A being a topological space. We say that E_a is stable in the family $\{E_a\}$ with respect to the relation \sim if there exists a neighborhood U of a in A such that for any point c ϵ U, we have $E_c \sim E_a$. The set K of points b ϵ A such that E_b is not stable is called the bifurcation set of the family $\{E_a\}$. Then the problem of structural stability is: Is the bifurcation set K nowhere dense in A?

Now, we consider the following situation: Let A and B be complex or real anlytic spaces or analytic sets. Consider a system of analytic equations

$$F_{ij}(x,y) = 0$$
 , $x \in A$, $y \in B$

Then we have a family $\left\{ \mathbf{E}_{\mathbf{a}}\right\}$, a ϵ A, of real analytic sets defined by

$$E_a = \{ y \in B | F_j(a,y) = 0 \}$$
.

We discuss in the present paper the structural stability of this family in the topological sense: E_a is topologically stable if there is a neighborhood U of a in A such that for any point $c \in U$, E_c is homeomorphic to E_a . Furthermore we are interested in the topological structure of the bifurcation set K of this family.

If we replace the term "analytic" by "algebraic" in the above situation, it is known that the bifurcation set K is constructible (or semi-algebraic) subset of A and nowhere dense in A. So , in this case, we obtain a positive response for the topological stability problem. The main technique is to stratify the projection map $p:G \to A, \text{ where } G = \{(x,y) \in A \times B \big| F_j(x,y) = 0 \} \text{ and } P \text{ is defined by } P = 0$

$$p(x,y) = x.$$

For a method of stratification of $p:G \rightarrow A$, see [1].

If A,B and F_j are complex analytic, it is also known that if $p:G \to A$ is proper, that is, if the counter image of a compact set is compact, the fact mentioned above holds exact: K is an analytic subset of A and nowhere dense in A. If $p:G \to A$ is not proper, we can not say any thing about the bifurcation sets K.

In real analytic case, Thom says [6], "une caractérisation intrinsèque de ces ensembles très vraisemblement stratifiés, n'a pas encore été explicitée dans la littérature." The purpose of the present paper is to give a similar response:

THEOREM 1. In real analytic case, if $p:G \to A$ is proper,

then the bifurcation set K is a subanalytic subset of A and nowhere

dense in A.

The main tools of the proof are the notion of subanalytic sets obtained by H.Hironaka [3] and the stratification of proper real analytic morphisms:

THEOREM 2. A proper real analytic morphism is a stratified map.

Next, we consider the following situation: Let A and B be real analytic or suanalytic sets. and let $f:A\times B\to R$ be a real analytic function. Suppose that B is compact. Then we have a family $\{f_a\}$, a ϵ A, of real analytic functions defined by

$$f_a: B \rightarrow R$$
 : $f_a(b) = f(a,b)$.

We consider the structural stability of this family in the following sense: f_a is topologically stable if there exists a neighborhood U of a in A such that for any point c ϵ U, f_c is topologically equivalent to f_a : i.e. there exist homeomorphisms $h_1:B\to B$ and $h_2:R\to R$ such that the following diagramm commutes

Then we have

THEOREM 3. In the abve situation , the bifurcation set K is suanalytic and nowhere dense in A.

This theorem follows from Thom's second isotopy lemma (proposition 2.5.) and the following theorem.

THEOREM 4. Let A, B and f be as above. Let $F:A \times B \to A \times R$ be the map defined by F(a,b) = (a, f(a,b)). Then A admits a Whitney

stratification S(A) such that for any stratum X of S(A), the map $F \mid X \times B:X \times B \to X \times A$ is a Thom mapping over the projection map $p:X \times A \to X$.

In the present paper, we only give the proof of Theorem 1 and theorem 2. For the proof of theorem 3 and 4 see [2].

Table of contents

- 0. Introduction.
- 1. Whitney stratification.
- 2. Stratified mappings and Thom's isotopy lemmas.
- 3. Subanalytic subsets.
- 4. Stratification of subanalytic subsets.
- 5. Stratification of a real proper mapping.

1. Whitney stratification.

In which we introduce the notion of stratifications which is due to H.Whitney [7], [8]. Here we recall only the definitions and some properties which we need. For the proof of these properties and more details, we are referred to R.Thom [5] and J.Mather [4].

Let X and Y be differentiable submanifolds of R^n .Let y be a point of Y and let $r = \dim X$. In what follows, $T_p(M)$ denotes the tangent space to a manifold M at a point p of M.

DEFINITION 1.1. We say that the pair (X,Y) satisfies condition (a) at $y \in Y$ if the following holds: Given any sequence x_i of points in X such that $x_i \to y$ and the tangent space $T_{x_i}(X)$ converges to some r-plane τ , we have $T_{y_i}(Y) \subset \tau$.

Here and in what follows "convergence" means convergence in the standard topology on the Grassmannian manifold of r-panes in $\ensuremath{\mathbb{R}}^n.$

For any two distinct points $x,y R^n$, the secant \widehat{xy} denotes the line in R^n which is parallel to the line joining x and y and passes through the origin.

Let X, Y be smooth submanifolds of R^n . Let $y \in Y$. Let $r = \dim X$.

DEFINITION 1.2. We say that the pair (X,Y) satisfies $\frac{\text{condition (b) at } y \text{ if the following holds. Given any sequences } x_i}{\text{of points in } X \text{ and } y_i \text{ of points in } Y \text{ such that } x_i \neq y_i, x_i \rightarrow y}$ and $y_i \rightarrow y$ and such that $T_{x_i}(X)$ converges to some r-plane $T_{x_i}(X)$ and the secants $\widehat{x_i}y_i$ converge to some line ℓ \mathbb{R}^n , we have $\ell \in T$.

We say the pair (X,Y) satisfies condition (a) (resp. (b)) if it satisfies condition (a) (resp. (b)) at every point of Y.

REMARK. (Mather [4].) If (X,Y) satisfies condition (b) at y, then it satisfies condition (a) at y.

DEFINITION 1.3. A <u>W-complex</u> is a set $S = \{x_{\alpha}\}$ of connected smooth manifolds in R^n , called strata of S, satisfying the following conditions:

- (i) The strata X_{α} are pair-wise disjoint.
- (ii) (X,Y) satisfies condition (b) for any pair (X,Y) of strata of $S = \{x_{\alpha}\}.$
- (iii) The family $S=\{\mathbf{X}_{\alpha}\}$ is locally finite: each point of \mathbf{R}^n has a neighborhood which meets at most finitely many strata.

DEFINITION 1.4. A stratified set is a subset E of R provided a W-complex S(E) = $\{X_{\alpha}\}$ with E = X_{α} . We call S(E) a Whitney stratification of E.

REMARK. (Mather [4].). The local finitness of strata and the condition (b) imply the condition of frontier: For each stratum $X ext{ of } S(E)$, its frontier $(\bar{X} - X) \cap E$ is a union of strata.

NOTATION. Let X,Y be two strata of S(E) with $Y \cap \overline{X} \neq \emptyset$. Then by the above remark, we have $Y \cap \overline{X} = X$. We represent this situation by the symbol Y < X and we say Y is <u>incident</u> to X.

2. Stratified mappings and Thom's isotopy lemmas.

Let $E \subset R^n$ and $F \subset R^m$.

DEFINITION. We say that a continuous mapping $f:E \to F$ is a <u>W-morphism</u> or <u>a stratified mapping</u> if there exist stratifications S(E) of E and S(F) of F and the following conditions hold:

- (i) f is extendable to a differentiable mapping of a neighborhood of E into \mathbb{R}^{m} .
- (ii) For any stratum X of S(E), the image f(X) is contained in a stratum Y of S(F) and the restricted mapping $f \mid X:X \to Y \quad \text{is a submersion.}$

A W-morphism $f:E \to F$ will be said to be <u>exact</u> if for any stratum X of S(E), f(X) is a stratum of S(F).

REMARK. A proper W-morphism is an exact W-morphism. (See Mather's existence theorem for tubular neighborhoods [4].).

PROPOSITION 2.2. (Thom's first isotopy lemma). If $f:E \to F$ is a proper stratified mapping, then for each stratum Y of S(F), the restricted mapping $f|f^{-1}(Y):f^{-1}(Y) \to Y$ is a locally trivial fibre bundle.

For the proof, see Mather [4], Thom [5] or Fukuda [1].

DEFINITION 2.3. (Thom's condition a_f .). Let X and Y be smooth submanifolds of R^n and let N be a smooth manifold.Let $f:U \to N$ be a differentiable mapping defined on a neighborhood U of X \cup Y in R^n . Suppose that f|X and f|Y are of constant rank. Then we say the pair (X,Y) satisfies condition a_f at a point $y \in Y$ if the following holds: Given any sequence x_i of points in X converging to y such that the sequence of planes $\ker(f|X)$ converges to a plane τ in the appropriate Grassmannian manifold, we have

$$\ker(f|Y)_{V} \subset \tau$$
 ,

where $\ker(f|X)_{x}$ denotes the kernel of the differential

$$(df|X)_{x}:T_{x}(X) \rightarrow T_{f(x)}(N)$$

of $f | X:X \rightarrow N$.

We say that the pair (X,Y) satisfies condition a_f if it satisfies condition a_f at every point of Y.

DEFINITION 2.4. (<u>Thom mapping.</u>). Let $f:E \to F$ and $g:F \to V$ be stratified mappings. Suppose that V is a connected smooth manifold and it is considered as a stratified set with its trivial stratification $S(V) = \{V\}$. Then we say that f is a <u>Thom mapping over</u> g if for each point p of V and any pair (X,Y) of strata of S(E), the pair $(X \cap (g f)^{-1}(p), Y \cap (g f)^{-1}(p))$ satisfies condition a_f .

Let $f:E \to F$ be a Thom mapping over $g:F \to V$. For a point p of V, set $E_p = (g f)^{-1}(p)$ and $F_p = g^{-1}(p)$.

PROPOSITION 2.5. (Thom's second isotopy lemma.). Let $f:E \to E$ be a proper Thom mapping over a proper stratified mapping $g:F \to V$. Then for any two points p and q of V, the restricted mappings $f|_{p:E_p \to F_p} \to F_p \quad \text{and} \quad f|_{E_q:E_q \to F_q} \quad \text{are of same topological type:}$ there exist homeomorphisms $h_1:E_p \to E_q$ and $h_2:F_p \to F_q$ such that the following diagramm commutes:

$$\begin{array}{cccc}
E_{p} & -\stackrel{h_{1}}{-} & \rightarrow & E_{q} \\
f & & & \downarrow & f \\
F_{p} & \stackrel{h_{2}}{-} & \rightarrow & F_{q}
\end{array}$$

For the proof of this proposition, see Mather [4] or Fukuda [/].

3. Subanalytic subsets.

In which we introduce the notion of "subanalicity" that is due to H.Hironaka [3]. All the properties are stated without proof. For the proof, more details or examples, see [3].

DEFINITION 3.1. Let Ω be an open set in \mathbb{R}^n . An analytic set $A \subset \Omega$ is a set such that for any point a of Ω , there is a neighborhood U of a in Ω and analytic functions f_1, \ldots, f_k in U such that

$$A \cap U = \{x \in U \mid f_1(x) = ... = f_k(x) = 0 \}.$$

DEFINITION 3.2. (Analytic mappings). Let A_1 , i=1,2,be analytic sets in open sets Ω_1 R . A continuous mapping $f:A_1$ A_2 is said to be analytic at a point a ϵ A 1 if there exist a neighborhood U of a in Ω_1 and an analytic mapping $F:U \to R$ with

$$\mathbf{F} | \mathbf{A}_1 \cap \mathbf{U} = \mathbf{f} | \mathbf{A}_1 \cap \mathbf{U}.$$

An analytic mapping is, at least in the present paper, a continuous mapping of an analytic set A_1 into another analytic set which is analytic at every point of A_1 .

DEFINITION 3.3. (Subanalytic subsets). Let $X \subset \Omega$ be an analytic subset of an open set Ω in R^n . A subanalytic subset $A \subset X$ is a set such that for any point a of X there exist an open neighborhood U of a in X and a finite system of analytic sets Y_{ij} and proper real analytic mappings $f_{ij}:Y_{ij} \to X$, $1 \le i \le p$ and j = 1,2, such that

$$A \cap U = \bigcup_{i=1}^{p} (f_{i1}(Y_{i1}) - f_{i2}(Y_{i2})).$$

PROPOSITION 3.4. Let A,B,C be subanalytic subsets of an analyticset X. Then so are A^{ij}B, A_OB and A-B.

PROPOSITION 3.5. Let $f:X \to Y$ be a proper real-analytic mapping.

- (i) If B is a subanalytic subset of Y, then so is $f^{-1}(B)$ in X.
- (ii) If A is a subanalytic subset of X, then so is $f(A) \quad \underline{in} \quad Y.$

DEFINITION 3.6. Let A be a subanalytic subset of X Ω Rⁿ. A point a ϵ A is called a regular point of A of dimension k if there is a neighborhood U of a, U Ω , such that A \cap U is an analytic submanifold of dimension k of U. A point a ϵ A is called singular if it is not regular.

PROPOSITION 3.7. Let A be a subanalytic subset of an analytic set X. Then we have:

- (i) The closure A of A in X is subanalytic in X.
- (ii) Every connected component of A is subanalytic in

 X and A has locally finite connectedness in X, ie., every point of

 X has a neighborhood which meets only a finite number of connected

 components of A.
- in X. The set of regular points of A of dimension p is subanalytic

 in X.
 - (iv) Regular points are dense in A.

DEFINITION 3.8. Thanks to the proposition 3.7 (iv), we can define, as usually, the local dimension of a subanalytic set A at a point a ϵ A. And so we can define the dimension of A as the max. of the local dimensions of A.

NOTATION 3.9. Let X and Y be real analytic submanifolds of R^n . $S_b(X,Y)$ will denote the set of points y ϵ Y such that the pair (X,Y) does not satisfy condition (b) at y.

PROPOSITION 3.10. Let X and Y be real analitic submanifolds of R^n . Assume that $X \cap Y = \emptyset$ and $X \supset Y$ and that X and Y are both subanalytic in an openset of R^n . Then there exists a subanalytic subset B of Y such that

- (i) B is closed in Y and dim B < dim Y.
- (ii) $B \supset S_b(X,Y)$.
- 4. Stratification of a subanalytic subset.

In which we give a proof of Hironaka's following theorem:

PROPOSITION 4.1. (Hironaka [3]). Let A be a subanalytic subset of an analytic set $X \subset \Omega \subset \mathbb{R}^n$. Then A admits a Whitney stratification whose strata are subanalytic in X.

DEFINITION 4.2. We say that a W-complex $S = \{Y_{\alpha}\}$ in \mathbb{R}^n is compatible with a submanifold X of \mathbb{R}^n if for any stratum Y of S we have $S_{\mathbf{h}}(X,Y) = \emptyset$.

It is clear that in order to prove the proposition 4.1, it is sufficient to prove the following:

PROPOSITION 4.3. Let A be a subanalytic subset of an analytic set $X \subset \Omega \subset \mathbb{R}^n$. Let X_1, \ldots, X_k be submanifolds of \mathbb{R}^n which are subanalytic in X. Assume that $A \cap X_i = \emptyset$ for each i. Then A admits a Whitney stratification which is compatible with X_1, \ldots, X_k and such that each stratum is subanalytic in X.

Proof. We prove the proposition by induction on dimension of A. If $\dim A = 0$, then the proposition is evident. So we assume the proposition holds for every subanalytic set A with $\dim A < m$ and we shall prove it for a subanalytic set A with $\dim A = m$.

Let A_{sp} denote the set of the regular points of A of dimension m. Then by proposition 3.7, A_{sp} and $A-A_{sp}$ are both subanalytic in X and we have $\dim (A-A_{sp}) < \dim A = m$. Since A_{sp} is subanalytic in X and a submanifold of R^n and since $A_{sp} \cap X_i \subset A_{sp} \cap X_i = \emptyset$, there exists , by proposition 3.10 ,a subanalytic suset B of A_{sp} such that

- (i) B is clased in A_{sp} and dim B < dim $A_{sp} = m$. (ii) $B \supset S_b(X_i, A_{sp})$ for each i=1,...,k.
- Set $C = B_{\bigcup}(A-A_{sp})$, $A^{\circ} = A_{sp} C$ and set $S(A^{\circ}) =$ the set of the connected components of A° . By proposition 3.7 (ii) , $S(A^{\circ})$ is locally finite in \bigcap , hence $S(A^{\circ})$ is a W-complex which is compatible with X_1, \ldots, X_k and such that every stratum is subanalytic in X and disjoint with C.

Since dim C <m, by the hypothesis of our induction, C admits a Whitney stratification S(C) which is compatible with X_1, \ldots, X_k and with all of strata of S(A^O).

Thus we have a Whitney stratification $S(A) = S(A^{\circ}) \cup S(C)$ that is wanted. Q.E.D.

5. Stratification of a proper real analytic mapping.

In which we prove the following

THEOREM 5.1.Let $f: X \to Y$ be a proper real analytic mapping

of a real anlytic set X into another one Y. Let $A \subset X$ and $B \subset Y$ be subanalytic subsets. Suppose that $f(A) \subset B$ and that $f(A:A \to B)$ is proper. Then $f(A:A \to B)$ is a stratified mapping with stratifications S(A) of A and S(B) of B such that any stratum of S(A) (resp. of S(B)) is subanalytic in X (resp. in Y).

DEFINITION 5.2. Let $A \subset R^n$ and $B \subset R^m$ and let X (resp. Y) be a submanifolds of R^n (resp. of R^m). Let $f:A \to B$ be a stratified mapping with stratifications S(A) of A and S(B) of B. Then we say that the stratified mapping $f:A \to B$ is canomatible with X (resp. with Y) if so is S(A) (resp. S(B)).

The theorem 5.1. is a immediate consequence of the following proposition.

PROPOSITION 5.3. Let $f: X \to Y$ and $A \subset X \subset R^n$, $B \subset Y \subset R^m$ be as in theorem 5.1. Let X_1, \ldots, X_k (resp. Y_1, \ldots, Y_ℓ) be submanifolds of R^n (resp. of R^m) which are subanalytic in X (resp. in Y).

Assume that $A \cap X_i = B \cap Y_j = \emptyset$ for each i and j. Then there exist

Whitney stratifications S(A) of A and S(B) of B such that

(i) $f \mid A:A \to B$ is a stratified mapping provided S(A)and S(B) and it is compatible with X_1, \ldots, X_k and Y_1, \ldots, Y_ℓ .

(ii) The strata of S(A) (resp. of S(B)) are subanalytic in X (resp. in Y).

To prove the proposition, we need

LEMMA 5.4. (Bertini-Sard). Let f:X + Y be a proper real analytic map, where both X and Y are smooth. Then there exist a subset S of Y such that

- (i) S is closed and subanalytic in Y and dim S < dim Y.
- (ii) for every connected component U of Y-S, either $f^{-1}(U) = \emptyset$ or f induces a submersion from $f^{-1}(U)$ to U.

For the proof see [3].

PROOF OF PROPOSITION 5.3.

We prove the proposition by induction on dim B. The verification for the case dim B=0 is immediate fro proposition 4.3. So we assume that the proposition holds for subanalytic set B with dim $B^{<}$ p and we shall prove it for a subanalytic set B of dimension B.

Let B_{sp} denote the set of the regular points of B of dimension p. By proposition 3.10, there is a coled suanalytic subset B_1 of B_{sp} such that dim B_1 dim B_{sp} and B_1 $S_b(Y_j,B_{sp})$ for each $j=1,\ldots,\ell$. Set $B_0=B_{sp}-B_1$ and $A_0=A$ $f^{-1}(B_{sp})$. Then A_0 is subanalytic in X and so is B_0 in Y. By proposition 4.3, A_0 admits a Whitney stratification $S(A_0)$ which is compatible with X_1,\ldots,X_k and such that each stratum is subanalytic in X.

Now for each stratum of $S(A_0)$, consider the restricted map $f|W:W \to B_0$ and set $\Sigma_W = \{ x \in W \mid \text{ the rank of } f \mid W \text{ at } x \}$ < dim $B_{sp} = p \}$. Then Σ_W is subanalytic in X. Since $S(A_0)$ is locally finite, $\Sigma = U \setminus \Sigma_W$ is subanlytic in X and closed in A_0 .

Then $f(\Sigma)$ and its closure $\overline{f}(\overline{\Sigma})$ are subanalytic in Y and dim $\overline{f}(\overline{\Sigma})$ dim B. Set $B_{00} = B_0 - \overline{f}(\overline{\Sigma})$ and $A_{00} = A \cap f^{-1}(B_{00})$. Set

$$S(A_{00}) = \{W \cap A_{00} \mid W \in S(A_0)\}$$

 $S(B_{00})$ = the set of the connected components of B_{00} .

With these stratifications $S(A_{00})$ and $S(B_{00})$, $f:A_{00} \to B_{00}$ is a stratified mapping which is compatible with X_1, \dots, X_k and Y_1, \dots, Y_k .

 $B-B_{00}$ is closed in B and dim $(B-B_{00})$ dim B=p. So by the hypothesis of our induction, there exist stratifications $S(B-B_{00})$ and $S(A-A_{00})$ with which $f:A-A_{00} \to (B-B_{00})$ is a stratified mapping such that it is compatible with $X_1, \dots, X_k, Y_1, \dots, Y_k$ and with all strata of $S(A_{00})$ and $S(B_{00})$.

Thus we have stratifications $S(A) = S(A_{00})^{\bigcup S(A - A_{00})}$ and $S(B) = S(B_{00})^{\bigcup S(B - B_{00})}$ which satisfy the conditions in the proposition. Q.E.D.

REFERENCES

[1]	T.Fukuda:Types topologiques des polynomes. to appear.
[2[:Stratification of proper real analytic mapping
	and a Thom mapping. toappear.
[3]	M.Hironaka: Subanalytic subsets, Number theory, algebraic
geometry and commutative algebra, Kinokuniya, Tokyo, 1973.	
[4]	J.Mather:Notes on topological stability, Lecture notes,
	Harverd University, 1970.
[5]	R.Thom: Ensembles et morphismes stratifies, Bull.Amer.M.
	s. 75, 1969.
[6[:Stabilite structurelle et morphogenese, Benjamin.
[7]	H.Whitney: Local properties of analytic varieties.
[8]	:Tangents to an analytic varaety, Ann.of Math 81
	1965 pp496-549.