50

穴を開けた球面のアイソトピー群について

東教大 理 金产或司

51年

52 定義 L 準備

肥を九次元ユークリッド空間、 $B^{n}=\{(x_i)/\sum_{i=1}^{n}x_i^{n}\leq 1\}$ を標準 n-球、 $S^{n-1}=\{(x_i)/\sum_{i=1}^{n}x_i^{n}=1\}$ を標準 (n-i)-球面とする。 それぞれに同相なものを、単に、n-球、(n-i)-球面という。 定義: $S^n \supset \hat{S}^{n-1}$ (n-i)-球面が任意の $z \in \hat{S}^{n-1}$ に対し、 S^n での近傍口が存在し、 $(U, U\cap \hat{S}^{n-1})$ と (R^n, R^{n-1}) が対同相 をなりとき、局所平坦という。 $S^n \supset D^n$: n-球がその境界で局 所平坦のとき、局所平坦という。

記号: $S^n \supset D_i^n$ ($i=1,2,\cdots,k$) を局所平坦な相交からないか 球上する。 $S^n - \stackrel{E}{\sim} D_i^n$ の斛包も S_k^n で表りる。

窓上のすべての自己同相群 $H(S_k^2)$ は、コンピクト開位相に関して、合成を演算とし位相群をなす。 $H_o(S_k^2):=f_R\in H(S_k^2)$ $/ A \sim 1$ $\{:= \iota: 1$ $\iota:= \iota:= \iota:= \iota: 1$ $\iota:= \iota:= \iota: 1$ $\iota:= \iota:= \iota:= \iota: 1$ $\iota:= \iota:= \iota:= \iota: 1$ $\iota:= \iota:= \iota:= \iota:= \iota: 1$ $\iota:= \iota:= \iota:= \iota:= \iota:= \iota: 1$ $\iota:= \iota:= \iota:= \iota:= \iota:= \iota:= 1$ $\iota:= \iota:= \iota:= \iota:= \iota:= 1$ $\iota:= \iota:= \iota:= \iota:= 1$ $\iota:= \iota:= \iota:= 1$ $\iota:= \iota:= \iota:= 1$ $\iota:= 1$ $\iota:=$

 $U: T_n \to I_n$ 飞包含字像 $\Pi: I_n \to I_n \to I_n$ を自然な準同型とする。

命題1. 短完全系列 $0 \rightarrow I_R \rightarrow I_R \rightarrow I_R \rightarrow I_R \rightarrow 0$ は分解型で、 $I_R \approx I_R \cdot Z_2$ (\cdot , 半直積) となる。

注2。(f) の生成する位数2の部分群<(r)>が工製で正規 なら、上は直接に分解。

 $L': ^{\dagger}I_{k} \rightarrow ^{\dagger}I_{k}$ 包包含字像, $\Pi': ^{\dagger}I_{k} \rightarrow ^{\dagger}I_{k}$ 包自然后望 同型 也 δ 3。

命題2. 短完全系列の→は『ペーン・『ペーン・『ペーン・『なんないで、・『なんは『な は た次対称群Poo同型。

次の定理が基本的役割もなす。

定理 n=2 かっん ≤ 3 , n=3 , n>6 のとき、 † $^{$

次の結果が知られている。(15」)

命題 3 (annulus sheorem)

 $f,g:S^{n-1}\to R^n$ が向きを保っ局所平坦な埋蔵で、 $f(S^n)$ が $g(S^{n-1})$ の囲む R^n の有界な領域ド含まれるとき、n+4ならば、埋蔵 $F:S^{n-1} \to R^n$ で、F(x,o)=f(x)=g(x) ($x \in S^{n-1}$) を満たすものが存在する。

命題サ(アイソトピー定理)

 $f:S" \to S"$ を向きを保つ同相字像とすると n + 4 かとき、 $f \sim 1$ 。(「~」は $P + \gamma + C \rightarrow \gamma$)

証明。命題3ょり次のように導かれる。 $S' \neq a$ (固定月3) に対し、 $\{a,f(a)\}\subset D^n$ なる n-球が存在する。 D^n の飲 構造により、 $f \sim f, \tau \cdot f(a) = a$ ヒ できる。 a の e- 球 並 像 B_E^n を f 小 t 〈とれば、 $f(B_E^n)\subset B_F^n$ となる a の f- 球 t 像が 存在し、 $f_{1}\partial B_{\epsilon}^{n}$ と $i:\partial B_{\epsilon}^{n}\to S^{n}$ (包含写像)に命題う を用いて $F(S^{n-1}\times I^{0}, I^{0})$ に沿って $f_{1}(\partial B_{\epsilon}^{n})$ を 動かすことに より f_{1} へ f_{2} で $f_{2}/\partial B_{\epsilon}^{n}=1$ とできる。 Alexander P1ソトピーにより、 f_{2} ~1 となる。

注3。逆も或り立つ。([1])

命題5 (アイソトピー核張定理)

別様体内上の同相写像 R:M → M の ∂M 上のアイントピー R_{2} $|\partial M$ は M 上のアイントピー R_{3} に接張できる。 定理の証明

 $I_{R}^{*}=0$ を示すドは $I_{R}^{*}\Rightarrow^{*}(R)$ が (R)=(I) すなわろ、 $H(S_{R}^{*})\Rightarrow R$ が向せを保ろ、 $A(\hat{S}_{r}^{**})=\hat{S}_{r}^{**}$ $(\hat{I}=\hat{I})\Rightarrow \dots \times A$ ならば、 $R \sim 1$ を示すがより。命題4、5 により R/a $S_{R}^{*}=1$ としてより。以下 3つの場合に分けて $R \sim 1$ を示す。

- i) k=1 oct, alexander P1 y + 10-1: 5 y 1~1.
- i) k=2のとき、 3,6回科させれば、[3]の9ん.(7.2)で成立。
- ii) R=3のヒき、 i)での(3)の方法を、変形の途中で分にひっかから好ように注意して適用すればよい。

注4。 R > 4では、 $L(\frac{\pi}{4}) = \langle (a) \rangle$ が I_{R}^{2} で正規 とならず、 $I_{R}^{2} + I_{R}^{2} \times Z_{2}$ (直積)。次はその例である。 $\partial S_{2}^{2} \supset \hat{S}_{2}^{2}$, \hat{S}_{3}^{1} を含み、他と交のらめ 2-球 $D^{2}(CS^{2})$ で、 $\Upsilon(p^{2}) = D^{2} L L 3 + n E L J , A | D^{2} D^{2}$

1] 1=3の場合

- i)た=1のとき、I]の場合と同様。
- i) たりとのとき、自然数mを 化>m>1 とする。 mについての場例法を用いる。

 $\hat{S}_{1}^{2} \vdash \hat{S}_{11}^{2} \vdash \hat{S}_{11}^{$

こ 常面回転させる。)し、命題5を用って $T_m(\partial \vec{s} \times o)$ (\hat{S}_m を止めて、んんが τ んり $\partial \vec{s}_n$ $\partial \vec{s}_$

次の特殊な場合について考しる。

補題 $1 > 2 \circ 2 \circ 2 \circ \mathcal{A}: S_2^n \rightarrow S_2^n \circ \mathcal{A}: S_2^n \rightarrow S_2^n \circ \mathcal{A}: S_2^n \rightarrow \mathcal{A}: S_2^n \circ \mathcal{A}:$

176での一般の場合,次のKirby [6] 9ん.17を用いる

命題6. タシェのとき、タ次元仮相砂様体Qのコンパクト部分外様体Q。コンペク人構造をもろ、かっ見への抵張が存在するならば、その拡張のQ。を止めたアイツトピー類は、H3(Q,Qo,Zo)と1対1に対応する。

参考文献

- [1] Brown.M. and Gluck.H.: Stable structures on manifolds I. Ann. of math. 79 (1964) 1-17.
- [2] Edwards. Rand Kirby. R: Deformations of spaces of imbeddings: Ann. of Math. 93 (1971) 63-88.
- [3] Gluck. H. Embeddings of 2-spheres in 4-sphere. Trans. Amer. Math. Soc. 104 (1962), 308-333
- [4] Hudson. J.F.P. Piecewise Linear Topology W.A. Benjamin. Inc. New.York. 1969.

- (5) Kirby R. Stable homeomorphisms and the annulus conjecture, Ann. of Math. 89 (1969) 575-582
- of manifolds. L.C.L.A. (Los Angels)

 (1969)