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Abstract

Using the language in kinetic theory of gases, the well-
known theorems on characterization of normal distribution are
considered. It is intended to clarify what the proof physically

means through the concept of collision, entropy and time reversal.

§1. INTRODUCTION

Using the }anguage in.kinetic theory of gases, we will
consider well-known theorems on characterizations of the normal
distribution first proved by M. Kac and S. Bernstein extended by
V. P. Skitovich, G. Darmois, S. G. Ghurye and I, Olkin aﬁd the
others. (For example, see [1], [2], (43, £631, [91.)

An information-theoretic proof was given to the theorem-in
l-dimensional case on the author's previous paper [3]1. This time,
it is intended to give extension to n-dimensional case and to
clarify what the proof physically means through the concept of
collision, éntropy and time reversal.  We have varying kind of
entroples, whose use dependé on situations we are dealing. (See
[101.] For our problem we use "Linnik's entropy". (See [7], [8].)
While in l—dimensional case, there are several proofs known, I
know in n-dimensional case, only one proof in which characteristic
function is used. By the method we have developed here, both

cases can be treated essentially in the same way. We must impose
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strict conditions, for example, the existence of variance,
differentiability of densities, etc,, although we can relax them
by smoothing by therGaussian distribution. Throughout this péper
we do not write down those conditions explicitly, since our aim
is to give the physical image to the theorem and its proof.

The theorems have a long hiStory dating back to Maxwell's
investigation, Although in recent works a characteristic function
1s the main tool for the proof, (See [9].), the origin of the
thedrems is in kinetlec theory of gases. 'In this connection, the

approach adopted in this paper is'quite natural and justifiable,

§2, CASE OF KAC'S CARICATURE —— OUTLINE

First we discuss the case of Kac's caricature of a
Maxwelllan gas, Kac's caricature of a Maxwellian gas is a
model for the motion of a molecule 1in a chaotic bath.of like
molecules, satisfying the followings, |

1) The molecular velocitiés are l-dimensional instead of
3.

i1) A collision is a 2-dimensional rotation:

le—-'Yl=chose+Xzsin9
Xz—f— Y2=—Xlsin9+X20056,

where § is uniformly distributed on [0,211), preserving the

energy,

1,2
35X

T1,2 1,2 1,2
1t X =350 Y

but not preserving momentum.
iii) Colliding pairs are uniformly distributed, and each

particle sufferson the average, one collision per unit time.

—2-
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There are particles Al’ AZ’ A3..., and at time t the

velocities of them are represented by the random variables

X X X

1, 20 3..-.

Theorem. If X, and X; are mutually independent and if the

statistical independence are preserved in spite of the

occurence of a collision, Xi’ X Yi and YJ are normally

j?
distributed.

Roughly speaking, we can realize the above theorem as the
following, Because of the mutual independence between Xi and
XJ,
Consider the time reversal,

entropy of each particle increases by a collision,

t— -t
Gy— Yy Yy— -Yy
Xy— =Xy Xy— ~Xy

that is, the particle Ai with the velocity -Y. and the

i :
particle Aj with _Yj collide with each.other and change their
velocities to —Xi and "Xj‘

By this time reversal,entropy of each particle also
increases, This contradicts the former, So the increment of
entropy must be zero on both time direction. Hence it is
necessary Xy, Xj’ Y, and YJ are normally distributed.

$3, 3-DIMENSIONAL CASE - —— OUTLINE

Boltzmann treated an assembly of particles considered as

hard spheres of diameter § . gonsider the particles Ai and Aj

e s - 2
whose velocities are v; and VJ,

collision is given by the unit vector €. The collision is

Center line at the time of

-3~
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determined by 7;, 53 and €
?i_and ?Blchange to

2! 9 = 2 o
vVyo= Vot (vi = Vi g)e
=7 - - e I N
v, = v, -~ (v, - v,, éle
R e T

We say, "the collision is 3-diménsional," if the plane
determined by ?i and VB is different from the plane determined
by.?g and ?3.

Consider the particles A; and Aj whose velocities are
represented by the random varlables f and ? By a collision
the velocities f -and i? change to ? and ?.. Using an

orthogonal matrix T, we have the following relation.

Y, X

RER N LS
Ol \& .

Theorem, Xi and j% are mutually independent random
vectors. If the collision is 3-dimensional, and if the
statistical independence are preserved.in spite of the
occurence of the collision, fif ?E, ?} and ?3 have rotation

invariant 3-dimensional normal densities,

In this case also, we can do the similar discussion as
the case of Kac's caricature, By the collision entropy of
each particle increases. Consider the time reversal.
Particle Ai and Aj'with their vglocitigs —?; and —?3‘gollide

and change thelr velocities to afi'and —f}, that is,

-X -Y,
) L | Yi
X -

J J/

By the time reversal the entropy of each particle also
increases. This contradicts the case where the time is not

reversed,
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So the increment of entrdpy must be zero on both time
direction. And we find the random vectors have rotation

invariant 3-dimensional normal density.

&4. CASE OF KAC'S CARICATURE —— DETAIL
We introduce an "entropy" first used by Yu. V. Linnik to
proye central limit theorem with Lindeberg condition, We name
this, Linnik's entropy. |
Consider one dimensional random variable X with coﬁtinuous
probability density p(x) and satisfying the conditions

sup p(x)<oa, E(X)=S xp(x)dx=0, and

(1) s
D)= ;czpcx)_dx.
We put
(2) I(X)=H(X)~31ogD(X)
following YU. V. Linnik whegé
(31 HOx =~ { () 1ogP(x)ax

~09

I(X) has the following properties. (See [3],[5].)

Lemma 1, I(X) is invariant with respect to a homothetic
transformation, i.e., for any .«.
(m) i(dX)=I(X).

Lemma 2. Let X and Y be mutually independent random
variables with probability densities p(x) and q(y) and
variances D(X) and D(Y) respectively, Then
(5) I(X#pY)-I(X)=5 FD(IE(X) +o(f)
for sufficiently sm231 p‘?lwhere
(6) f(x),=J (lf;@%)) p () dx-5 7oy

Lemma 3, Let £(X) be the value defined by (6), then we

have
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£(X)2 0
and
£(X)= 0

if and only if X is normally distributed.

We name —Splogp, Boltzmann's entropy. It was used by
‘Boltzmann to prove H theorem, For the p(x,t) which satisfies

3 kind of Boltzmann equation (7), we can prove H theorem,

that is; %...-.S p(x,t)logp(x,t]dx 20
(7) 5%»p(x,t){[&mﬁzlcose+ysin6,t)p(—xsin9+ycose,t)
o .
—?(x,t)p(y,t)dy%%

Consider the diffusion equation,
: ) ~1 3% '
(8) 3t p(X,'S_),=-2— jﬁip(x,t),
and use Linnik's entropy,

ig;(x,t)logp(x,t)dx~%logt,
we can p;ove H theoreh also in this case. It is interesting
we can use Linnik's entropy for a problem of kinetic theory
of géses in which uSually Boltzmann's entropy is used.
(9) Let Y1(91=chosG+ngin9

| Y,(f)=-X,sinB+X,cosB
and let lel-Xz, (that is X, and X, are mutually independent),,
Yl(elijlnYz(ell, Y1(92}1L ¥,(0), we can decompose a collision
which préserves independence to two collislons which preserve
independence.

Collision 1. A, with X, and A, with X, collide and
change their velocities to Y,(0)) ana ¥,(0)).

Collision 2. A, with Yl(el) and A, with Yz(el) collide
and change their velocities to Yl(ez) and Ya(gz).

—6—
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Theorem 1. The random variables Xl and X2 are mutually
independent. If § is sufficiently small and if Y,(f) and Y2(9)
are mutually independent, X1 and X2 are normally distributed.

Proof. The outline of proof has already been shown in §2.
By the collision X1 and X, change to
¥,(6)=X;cos8+X,51inf v

(10)
Y2(9)=—Xlsin8+xzcosﬁ, respectively.
Using Lemma 1 and Lemma 2, we see
T(Y(§))-T(X))=I(Y (9)/cos@-I(Xi)=I(x1+x2tan9)-1(xl)
—%tan BD(X,)F (X )+0ChH)
(11)

I(Y,(0)1-I(X,)=I(¥,(@)/cos§)-I(X,)=I(X,-X tanh)-I(X,)
=%tan DX, )E(X,)40(6%).
So the entropy'éf each particle increases since f(Xl)ZO and
£(X,)20 by Lemma 3,
Consider the time reversal,

A with—Yl(B) and A

1 with —Y2(9) collide and change to

2
129 —X1==Y1(9)COSB+Y2(9)sin9
~X,=-Y,(B)sin ~Y,(B)cosh, respectively.

By the same argument,
I(-X{)=I(-¥;(§))=I(X;)-I(¥,(0))=

LangD(Y,(8))£(Y; (8))+0(§)
I(-X,)-I(~Y,(0))=T(X,)-1(Y,(8))=
Lian?9D (¥, () £(7,(0))+0(§)

So the entropy increases also since

(13)

£(Y,(0))20 and £(¥,(§))20 by Lemma 3.
This contradicts the case where the time is not reversed, unless

f(le, f(Yl(Gj}, T(Xz), and f(YZ(S)) are zero, So X; and X, are

normally distributed.
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Theorem 2. If XM x5, ¥y(6 AL v (8, (8 1L v, (8, and
if 92-61 is sufficiently small, Xl and X2 are normally distributed.

Proof, In this case we can decompbse a collision to two
collisions which preserve independence,

Collision 1,

X, and X, collide and change to Yl(el) and Yz(el).

Collision 2,

Y1C91) and YZCGLZ colllide and change to Yl(Qa) and Y2(92)'
The relation between (Yl(el), ¥,(8¢)) and (v, (89, ¥,(8,)) 1s the
following.
Y1(921=Y1(91)§os(92-91)+Y2(91)s1n(92~91)
¥ ( 92)=-Y1291)sin(9?_—81)+Y2(91) cos (§,-01) -
Applying Theorem 1 to Collision 2, we find Yl(el) and Y2(81)

(i)

are normally distributed. So X; and X, are normally distributed.

85. 3-DIMENSIONAL CASE —— DETAIL

Yu. V. Linnik extended his result of one dimensional case to
a class of n dimenslonal random vectors X which have a probability
density p(X) subjected to the conditions sup p(X) ; EX= 3; Bo=
EX YT>O and finite, For the class he defined foliowing information
functional,

I(X) = -\ p(X) log p(Xdx.dx,...dx
n* 1772 n
(15) JR 1
' —glog(det Bia .

Yu., V. Linnik proved the following Lemmas,

Lemma 1. If A is n dimensional non-singular matrix, ¥ = AX,

then

(16) (Y = 1(R)
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Lemma 2. Let X and Y be mutually independent random vectors

and F is a matrix, then

(17) (X +BY) = % B [ I - B3 ] + o(TrB,o)
i 2251 PY 15 X gy X4 PY
2 |
_ - -

where IY g = 5§;§§3-1og p(x) p(x)dx, ... dxn .

Lemma 3
(18) Iz - B 0

X 43 ?.13‘2

Equality holds if and only if X is normally distributed.

Theorem 3.

1) A, with the velocity ¥, and A, with Yé collide and

1 2
change their velocities to Yi(T) and Yé(T),

where
\ <+
( Yi(T) X,
(19) =T
\YZ(T) fé

and T is a 6-dimensional orthogonal matrix_

ii) |T-Ell is sufficiently small with respect to Frobenius
norm, where E is 6-dimensional unit matrix,

iii) The collision 1s 3-dimensional,

= ->
If 2&, X, ¥ (T) and ?é(T) satisfy the above conditions, Yl and X,

have rotation invariant normal densities.
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Proof. T is repfesented as the following
’ 7/ d I'4
(20) A (1) A (m
o o
21(T) Ppp(T)

for 3-dimensional matrices(% (T).

Kj
(19) is equivalent to
(21) il B ¥,(T)
=T
%, v, (T) |
where

Fram P

Pm  Bym

for 3-dimensional matrixjskj(T).

-

By a collision Xl changes to

(22) Y. (m) = A (T, +2 (T,
Applying Lemma 1 and Lemma 2 to (22), we have the following

relation

' -1
(23) (¥ (M) - 1(X;) = TE&TT(MT (M) - (X))

3
-3 ) v, - B

5 |
-1
et X7 (MT, 4y [ sk jk )

+0 (TrB 5 ) .
A71(T) oty (DT,

.So the entropy increases by Lemma 3.

Consider the time reversal. By a collision —?i(T) changes to

(ev) % = AR MTT) - L, (MT,(T)

-10-
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By Lemma 1 and Lemma 2,

(25) I(—;cl) - I(-¥3(M) = (X)) - 1T (7))
1 _ -1
== B T - B
2 -1 . . ,
+ o(TrB
RII(TB (T, (T)

So the entropy increases by Lemma 3. This contradicts the case

where the time 1s not reversed, unless
: o1 .
I .. -~ B . and
ii Jjk fi Jk
’ n=1 R
I - B are zero for every jk.
T, (T) Jk ¥,(T) gk

Taking accpunt the condition "the collision is 3-dimensional",

we find fi and fé have rotation invariant 3-dimensional normal

densities,
Let ?i(Ti) o X,
i
¥, (Ty) %,

- - -> )
and let X L X,, ¥,(r) Ul Y,(T), ¥,(T,) 1l ?é(Tz), we can
decompose a collision which preserves independence to two
collisions which preserve independence.
Collision 1, A, with ¥; and A, with X, collide and change
thg%r velocities to Yl(Tl) and ?é(Tl),
Collision 2. A, with ¥,(T;) and A

1 2
change their velocities to Yl(Tz) and ?2(T2). The relation

with ?E(Tl) collide and

- - . _ \
between Yi(Tli and ?i(T2> is represented as the following,

-11-
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1) .

So we can extend theorem 2 to 3-dimensional case.

In the above discussion, "3~dimensional" is not essential

we can prove the case of "n-~dimensional" by the same argument.

Strictly speaking, condition ii) in Theorem 3 must be stated
as the'following.
Theorem 3'. .
i) Al with the velocity jl and A, collide and

change their velocitles to Yi(Ti) and ?é(Ti),

where
¥, (Ty) X,
(19) = T'l
7,(7;) %,

and T; is a 6-dimensional orthogonal matrix.
ii) T, (i=1,2,3?;.. .) converges to E with respect to
Frobenius norm, where E is 6-dimensional unit matrix.
iii) The collision 1s 3-dimensional.
. : S
1r X, X,, ¥.(T,) and Y,(T.,) satisfy the above conditions, X, and
SR A1 fos Iy 2% 1 1
—>
X2 have rotation invariant normal densities,
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