goooboooogn
0 2240 19740 82-100

82

Asymptbtic Invariants for Slowly Changing
Ordinary Linear Differential Equations
by
Wolfgang Wasow
University of Wisconsin

and

University of Tokyo

1. History of the Problem.

If a physical system changes, most of the quantities

describing its state also change. Occasionally, one meets
invariants.with respect to change, and such invariants are the
cornerstones of physical theories. I need only mention conser-
vation of mass, energy or momentum to indicate what I am refer-
ring to.

I wish to talk about physical quantities that are not
invariant in the sense just mentioned, but which change "very
little", if the system changes '"very slowly'. They are called

"adiabatic invariants'" and have been the subject of many studies

during the last 60 years. Let me begin with an example that is
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more in the nature of an analogy: Take a physical system consist-
ing of a man and a mountain and consider the process of the man
climbing the mountain. The man's elevation above sea level is
a quantity connected with the system, and so is the rate of his
heart beat. The former quantity changes as the man climbs the
mountain, no matter how long it takes, but his heart beat depends
on his speed. 1In fact, if the process of climbing is performed
very slowly, the rate of heart beat wiil change hardly at all.
The origin of the term "adiabatic invariant" is the thermo-
dynamics of a system without heat transfer. The entropy of such
a system remains unchanged if its state is changed "infinitely
slowly".
The simplest instance of an adiabatic invariant ié connected
with the motion of a frictionless pendulum that oscillates with
a small amplitude. The distance u(r) of the pendulum from

its rest position at time 1T satisfies the differential equation
——§-+ ¢ u=20, (1.1)

where ¢ 1is the frequency. Let m denote the mass of the

pendulum, then, as is well known, the total energy,

Lol (§2)% + 4P’ (1.2)

2
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is a strict invariant, i.e., independent of
Now assume that the length of the pendulum is slowly altered.
Then ¢ = ¢(t) 1is no longer constant. The differential equatioh

2
d—%+ 62 (t)u = 0 (1.3)

dt
is still valid, but the quantity (1.2) now changes with time, and
this change may be quite substantial, if the length, and there-
fore ¢(t), 1is changed substantially, no matter how slowly the
system is altered. It turns out, however, that the ratio of the

expression (1.2) and ¢(;) changes very little, if the pendulum

is changed slowly. In other words, the quantity
-1 du .2 2
A(D) = ¢ (DG + o (D) (1.4)

(we have removed the irrelevant factor m/2) is an adiabatic
invariant.

The recognition that A(r) 1is an adiabatic invariant has
an interesting history. In the early years of this century,
which are also the early years of Quantum Theory, the atom was
thought of as a vibrating system governed by the laws of classi-

cal physics, but subject to the rule that the quotient energy/

frequency remained constant over long periods of time and then
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changed abruptly by some multiple of Planck's constant. One of
the mysteries of this behavior was that the continuously changing

forces of the surrounding electro-magnetic field ought to change

that ratio in a continuous manner. In a short but memorable
exchange of opinions between Lorentz and Einstein in 1911 at the
first International Solvay Congress Lorentz asked the question
above and mentioned the illustration by the pendulum of changing
length. He also conjectured an explanation: The quotient in
question changes very little if the field changes slowly, and
measured by the high frequencies of atomic radiation the changes
of the exterior forces are very slow indeed. Then Einstein got
up and stated that he had performed calculations showing that
the quantity energy/frequency did change infinitesimally little
if the data changed infinitely slowly.

It is not known how Einstein obtained his result, but now,
63 years later, there exists a substantial literature on this
and related questions. It is true that since 1924 Quantum
Mechanics has superseded the older attempts at explaining atomic
processes by classical ﬁechanics, but it turned out that many
other physically important questions lead to the same mathemati-

cal formulation. This is true, in particular, for recent
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research in the theory of plasmas.

The first step towards a precise mathematical statement
of such problems is a mathematical interpretation of statements
such as "¢ (1) wvaries very slowly". The simplest model is to
replace ¢(t) by a function ¢(et), where ¢ 1is a positive
parameter that tends to zero. Then d¢/dt = edé (et)/d(et)

tends to zero with €. It is now natural to measure time in a

"compressed" scale by setting

eT =t (1.5)
and to change the differential equation (1.3), accordingly, into
2., 2 .
e U+ ¢"(t)u =0, (u = du/dt). (1.6)
A particular solution can be identified by initial conditions

such as, e.g.,

u=ug, du/dt = edu/dt = u,;, at t=0. (1.7)
The aim is to calculate asymptotically, as € —> (4, the
quantity in (1.4), which has now the form
Aft, €) = a(e)u(t, ) + 26 L(eyal(e,e). (1.8)
The early work on this problem suffers from two drawbacks:
(i) It was assumed that the length of the pendulum — and hence
$(t) — was constant outside some finite time interval tlét:étz;

(ii) No precise smoothness conditions on ¢(t) were explicitly
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stated. The first condition may be deplored more by mathematicians
than by physicists, but the second one should concern the physi-
cists, as well, since the total change of A(t, €) turns out to
depend in a very sensitive way on the smoothness of ¢(t).

Einstein's assertion on A(t,€) reads, in our present nota-
tion,

lim [A(tz, €) -A(tl, e)] =0 . (1.9)
30+

In 1959 the Physicist A. Lenard [4] obtained the more precise
and striking result that
At,, €) - Aty, €) = 0(eY), for all N > 0.

An inspection of his proof showed that he had not only used the
assumption that ¢(t) was constant outside the interval
St s tys but also — without stating it specifically —
the essential hypothesis that ¢(t) was infinitely differen-
tiable, not only in [tl, t2]’ but for all real ¢t.

In 1963 Littlewood [6] proved that Lenard's result could be
extended to positive functions ¢(t) that were not necessarily

constant outside some interval, provided the limits ¢ (£ =)

existed and were positive, and all derivatives of ¢ were

integrable on -« <t < », The result must now be written

A(e,e) - A(-w, g) = O(EN), for all N > 0. (1.10)
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(The existence of A(z», €¢) can be proved.)
On the other hand, it is not difficult to prove that, in
geﬁeral,
A(tz, g) - A(tl’ g) = 0(e) , (1.11)

and no better.

It is remarkable that the vibrating system should have this
kind of memory: After an infinite time interval the quantity
A(t, ¢) settles down to a value much closer to its initial value
than the ones it had assumed in between. This is, however, a
mathematical property whose physical significance may be an
illusion, in as much as (1.10) is no longer true, as soon as the
stringent smoothness requirements on ¢(t) are relaxed.

Ignoring this question of physical relevance, several papers
have been written — some by mathematicians, some by physicists
— endeavouring to replace the right hand member of (1.10) by a
mpre explicit asymptotic expression. (See, e.g., [2], [1], [3].)
In the next section I shall give a brief account of a new proof
of Littlewood's result which can be used as a starting point for
a more precise analysis of the total change of A(t,e). (See
[12], [13].) The method has points of resemblance with that

developed by R. E. Meyer ([7], [8]) simultaneously and
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independently.

2. The Analytic Case.

Y. Sibuya [9] has described a very general method for the

reduction of linear differential equations depending in a singular

manner on a parameter. When that method is applied to the simple

differential equation (1.6) it amounts to a transformation to
the Riccati equation
. . 2 2
ep = 2i¢p + ¥ - e Yp (2.1)

by means of a change of dependent variable described by

. _1i¢ ep-l ' (2.2)

u e ep+l

Here

Vo= /20 . (2.3)
Under Littlewood's hypotheses ¥ and all its derivatives are
in Ll(—w, ),

The Riccati equation (2.1) has the pleasant property that

some of its solutions possess asymptotic power series expansions.

By a slight modification of Sibuya's argument one can, in fact,
prove the following theorem.

Theorem 2.1. The solution p = p(t, €) of equation (2.1)
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for which p(-~», e) = 0 possesses an asymptotic expansion of

the form

p(t, &)~ ] P (E)e" , as e—>0r,  (2.4)
r=0

which is uniformly valid in -« < t £ «» and may be indefinitely

differentiated. Moreover, the limit

Lim p(t, ¢ expl- 2 o(t)] , (2.5)
t'+00
where
t
o(t) = Io ¢(s)ds , (2.6)

exists and is O(eN) for all N > 0.

Returning from equation (2.1) to the original differential
equation one can calculate u, u and A. After some calculation

one finds, in particular, the formula

o -Zo(e)

€ 2 2
A(»,€) -A(->,€) = 2Re{k e p(t) (L-e"p(t,e))de}(1+0(e)),
(2.7)
which expresses the total change of A(t, €) in terms of p(t,e).

Here k 1is an explicitly known constant depending only on the

initial values g and ul.
Littlewood's result (1.10) follows immediately from (2.7)

by repeated integrations by part and the facts that y and all

its derivatives vanish at * o, while all derivatives of p
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remain bounded.

The details of the~arguments just sketched can be found in
[12].

Formula.(l.IO) cannot be improved unless conditions more
stringent than those of Littlewood are imposed on ¢2(t). One
plausible such hypothesis is that ¢2(t) should be an analytic
function holomorphic in a parallel strip of the complex t-plane
including the real axis, and, also, that the function ¥(t)
should remain integrable along parallels to the real t-axis.
With such properties of ¢2(t) one may hope that p(t, €) will
remain bounded in such a strip and that the integral in formula

(2.7) can be replaced by the integral, over the same integrand

along a parallel to the real t-axis on the side where Im ¢(t)
< 0. It is not difficult to prove that this is really true, and
then a glance at the integral shows that

A(=, €) ~A(=m, &) = 0(e™/%) (2.8)
with sbme positive constant c.

It is much more difficult to replace the right member of
(2.8) by an explicit asymptotic formula. One must expect that
the upper bound of admissible values for c¢ in (2.8) will depend
on still more specific properties of ¢2(t). In [13] I intro-

duced some fairly natural condition on ¢2(t), whose description

10
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requires a few preparatory sentences: In the asymptotic theory
of differential equations such as (1.6) the zeros of ¢2(t), the

so-called "turning points', play a central role. If

0%(tg) = 0, but [a@H/del,_ #0, (2.9
0

then t, is a "simple" or "first order" turning point. The

value of Im ®(t), where &(t) 1is defined as in (2.6), largely,
determines the asymptotic behavior of the solutions of equation

(1.6). The curves defined by

Im o (t) =1Im o(t (2.10)

o)

in the complex t-plane, often called "Stokes curves'", are there-

fore important. It is easy to see that at the branch point t
t0 of & (t) three such Stokes curves meet and form equal angles
there. I now add the condition that two of these curves can be
extended to infinity and bound, together with the real axis, a
region R in which ¢2(t) is holomorphic and has no zeros.

(See the figure below.)

t-plane

Y

0

Since ¢ assumes conjugate values in conjugate points, it

11
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is no loss of generality if we stipulate that
Im @(to) <0 . (2.11)

It is now possible to replace the path of integration in
(2.7) by the union of the two Stokes curves that bound R and
to evaluate it asymptotically. The details of these rather long
arguments can be found in [13]. They involve the asymptotic
calculation of three different fundamental systems of solutions
for the differential equation (1.6). Two of these are found by
methods similar to those leading to Theorem 2.1. The third one
is based on the theory of simple turning points as developed, e.
g., in [11], sections 29, 30. Then, connection formulas between
these fundamental systems are established, p(t, €) 1is asymp-
totically célculated along the whole new path of integration,
and, finally, the integral in (2.7), or rather its leading term,
is determined. Thus the following result is eventually obtained.

Theorem 2.2. Let

/2 ..-1/2 du _ 18
[¢67"Tu + i dT]T=0 r e .
Then o(tn)
-2i] +0,]
2 € 0
A(oo’ E)-A("oo, g) =r0 Re{Ke }+... s

where

12
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w o218 1/2 AL (p)Ai' (p)
c = '%f e - 0 T 5 ds ’
~ [p°Ai(p) -AL'(p)]
. \2/3 . ] . .
p = (515) , Ai(p) 1is Airy's function.

3. Brief Remarks on Related Problems.

It is clearly impossible in a short expository article even

to mention all the numerous existing investigations on adiabatic
invariants. A list of a few problems and results related to the
work already described here will have to suffice. I must leave
aside the most important question, namely that of extending the
theory to nonlinear differential equations. More work in that
direction from the point of view of the mathematician would be
very desirable.

As was mentioned before, Littlewood's hypotheses on ¢2(T)
in the differential equation (1.3) are probably a poor mathemat-
ical model of physical reality. Of greater interest is the case
when ¢2(r) is allowed to have a finite number of jumps in some
derivative, the first or second, say. It is not difficult to
modify the method of [12] so as to yield explicit formulas for
the variation of A(t, ¢) in that case.

Can the results of [12] and of [13] be extended to more

13
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general linear differential equations? Such an extension is

proved in a recent article by A. Leung and Kenneth Meyer [5].

They consider linear systems of differential equations of the

form
& - wny | (3.1)
dt ? :
where H(t) 1is a 2n-by-2n Hamiltonian matrix function. If In
is the identity matrix of order n and JZn is the matrix
0 I,
J =
2n -1 0 ,

a real 2nx2n matrix H 1is called "Hamiltonian" if JH is

a symmetric matrix. Most linear differential equations of

Mechanics are of this type. If we set

u
(e
du/dt 5 -

equation (1.3), for instance, becomes

0 1
d
== 2 y (3.2)
-¢ () O

which.is, indeed, Hamiltonian.
Leung and Meyer adopt Littlewood's hypotheses for the

entries of H(t). In addition, they need the following two

restrictive conditions, which are satisfied by (3.2): The

eigenvalues of H(t) are distinct throughout (even at 1 = =),

14
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and they are pure imaginary. Since H(t) is real, the eigen-
values occur, therefore in pairs of the form ii(t), -iA(T),
(M(t) positive).

Next, a satisfactory explanation is needed of what is to be
called an "adiabatic invariant" for the system (3.1). 1 propose
the following definition, which differs from the one in [5] and
even more from some others in the literature.

Definition 3.1: A scalar function I(y, t) is called an

adiabatic invariant of the differential equation

dy y
37 = H(Dy y = u.(t)

if the solution of the initial value problem

dy _ - -
€3f = H(t)y , Yy =Y, for t =0, (3.3)

satisfies the relation

Lim {T1(kg(t,), £,) ~I(H(t), £} = 0
e+

for all ts t, (possibly depending on € ) and for all Yo

independent of ¢,

The essence of the method of Leung and Meyer is to construct
a matrix function P(t, €) such that the transformation
y = P(t, e)z (3.4)

takes the differential system in (3.3) into a system

15



37

ez = D(t, €)z (3.5)
with a diagonal coefficient matrix. This can be achieved in
many ways. The procedure in [5] has two very important features:

(a) D(t, €) shares with H(t) the prOperty.that its
eigenvalues occur in pairs that are negatives of each other,
i.e.,

D(t,e) = diagld,(t,e), -+,d_(t,e),~d;(t,e), - +,-d_(t,e)}; (3.6)

(b) The asymptotic relation

O0(e) , for all t
(3.7)

P(tae) -P(t> 0) = { N
o€y, for all N>0, if t =#o

holds.

One sees easily that

t
'];.fo D(S,e‘)dS -
b (6) = B(e, e)ef P (0, )y, - (3.8)

Therefore, the components of the vector

'%‘ftD(s,E)ds -
e 0 P (t,e)u, (t) (3.9)

are independent of t, and are, in this sense, absolute invari-
ants. This is, however, a rather trivial fact, which, by itself,
~ does not lead to adiabatic invariants according to our definition,
because the expression (3.9) depends explicitly on €. The

special properties (3.6) and (3.7), on the other hand, imply that

16
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the n scalar function of y and T alone:

-1 -1 .
{P (T,O)y}j{P (T,O)y}n+j s 3=1,2,-++,n, (3.10)
are, indeed adiabatic invariants. Here, the notation {v}k
s e es th :

signifies the k™ component of the vector wv.

This result reduces to the one obtained by Littlewood, when
applied to the system (3.2). It is therefore its natural gener-
alization.

We conclude with a very brief reference to another recent

contribution to the theory of Lorentz's adiabatic invariant (1.4).
A C”-function ¢(t) 1is analytic, if the sequence of its

successive derivatives {dk¢/dtk} does not grow so fast that

its Taylor series diverges. It is to be expected that the order

of magnitude of the quantity A(x,e) -A(-»,e) for infinitely

differentiable but not necessarily analytic functions $(t)

will be reiated to the rate of growth of that sequence of deriva-

tives. G. Stengle, in a paper to be published shortly, [10],

has proved an interesting theorem in this direction. His

arguments are too intricate to explain in a few paragraphs. Only

the principal result will be described: 1If ¢ satisfies Little-

wood's hypotheses, but is not analytic, let ”¢(k)H be the

Ll(-w, ®)-norm of dk¢/dtk and assume that

17
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16“) = o)) , as k—r= .
Set
h(k) = log g(k)
and interpolate h so that h(g) 1is defined for all y 2 0.
Define

h*(x) = m;x{xy-h(y)} :

h* is sometimes called the convex conjugate of h. Then

A(»,e) "kA(-°°, g) = o(e-h*(c log 6)), as € >0+

for all ¢ > -1.
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