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Vector Valued Pseudodifferential Operators

and their Applications

By Kazuaki TAIRA

Department of Mathematics, Tokyo Institute of Technology

§1. Imntroduction and the result. In this note we introduce
the vector valued pseudodifferential operators where the vector
space depends on a parameter (cf. Sjostrand [3], S4) and take
this opportunity to construct global parametrix-like operators

for the following operator in R%:

P(x,t,D_,D,) = D, — it" a(x,t,D,,D;) + b(x,t,D ,D,),

where (x,t)eR™ with xe¢R™)

, teR and kezV is odd, and a(x,t,D_,D,)
and b(x,t,DX,Dt) are properly supported classical pseudodiffer-
ential operators of order 1 and order O respectively, and the

principal symbol a1(x,t,§,t) of a(x,t,DX,Dt) is positively

homogeneous of degree 1 and

() Re a (x,t,%,T) # O

for (x,t)eR, (§,%) # (0,0), §er™

» T€R (cf. Sjostrand [2]).
Introducing the vector walued pseudodifferential operators, we
can construct the parametrix-like operators in the above non-

elliptic case completely analogous to the elliptic case.

Theorem. (cf. [2), Theorem 1.) Assume that for all £, m

Z+V{O} and multiindices d,p there exists a constant C =

-1 -
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C(ol,£,8,m) such that

(8) | B piofnga, (x,0,8,0)] < ¢+ 151 + Ixl y!~1el-n

for x¢R%™ » (8,%) # (0,0).
I. (i) If Re a,(x,t,§,T) > O for (x,t)€R" and (§,T) # (0,0),
fhen there exist properly supported operators
B’ (r%)
® n-1
L (R

i

/ZDI rt

(P ): D@ —>

D (=%

— +y. /. n
4. = (a,,6%: Q%_H — D&Y

such that 9]-’P1 - I and //)1- 31 - I have C*®kernels.

(11) If Re a,(x,t,%,7T) < O for (x,t)€R” and (%,T) # (0,0), then

there exist properly supported operators

D’ (r%)
D = (P,R7): ® —_— o@/ (R™)
/2 ’ QI(Rn"‘])
/oy
G / o@ (R™)
— 2 7
= : (R ) — @
gz (G") 2 D’ (R

such that 92./[72 - I and Pa.g-a - I have C®™ kernels.

IT1. PFor all s¢R,

.gloc, n n
G1,G2.HS (R™) —-—7Hs+ 1-1rk (R7),

G*:Hi"C(Rn“‘) —> H°T
T¥K
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G-:Hioc(Rn) Hioc(Rn~1)

are continuous.

IIT. WF'(G,), WE'(G) < {((x,£,%,7),(x,t,5,0))e(TXE") N\ 0)
x(T¥ M)\ 0)}; |
WE'(RT), WP (6M)C {((x,0,%,0),(x,8)) e(T* R N 0)x(T¥(R*" 1) N o)}

WE(RY), wRr(eT) < {((x,8),(x,0,5,00) (T*R™HNox(r¥rHN0)].

§2. Vector valued pseudodifferential operators. (cf. Treves

EQ], Tkeorem L4.1.) Let H1 and Ha be complex Hilbert spaces and

let 5{,(H1,H2) be the Banach space of bounded linear operétors
H, =—> H,. We define s™(R"xR™; H,,H,) as the space of c®
functions-p(x,g) on R™R"™ with values in dl(HT’HZ) such that
for all K €< R" and multiindices o ,[3 there exists a constant C =

C(d,p, K) such that
o« p m- 181
I DngP(X’g)”i(HI,HZ) <+ 130

for all (x,§)€KXR". With such symbols we define L™(R"; H,,H,)

to be the space of pseudodifferential operators P(X,DX):C;YRH; Hi)
—> C™(R"; H,).

We shall consider the case that H1 or H
1

> is equal to the

space D}E(R) with kez*, £€R™', which is a subspace of H (R),

given by the norm:

2 00
luf[ %, = (1+150"E J luCt)|2at +
DL
§

- 0o

(continued)
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L 0
(1+181)° j %5 Ju(e)] fat + |p,ut)) Zat.
(cf. [3], 84.)
In this case the norm || || £.(5. 8 j depends on geRn’1,
’ 172

but all the calculus for scalar operators (cf. Hormander 0
extends to the vector valued case; in particular we have the
usual composition formula and the results about HS—continuity

because we have the inequality:

< < (
nunDk<uu||D,g < G lgh lall

and hence

LR By, DE(R)) € LR DN,

R* 15 oi(r) ) < LMY oFm) u ),

§

where Dk(R) is the space D

L™

i
5

We define Tm(Rn) to be the space of "pseudodifferential

(R) with § = 0.

operators! a(x,t,DX):C:(Rn) ———9~Cw(Rn) where a(x,t,¥) €
» SMR™R®1) (see [2], aAppendix).

Under the assumptions (A), (B), we can reduce the proof of
Theorem to the proof of

Proposition. (cf. (2], Proposition 3.6.) Let L(x,t,Dx,Dt)'s
D, - it" r(x,t,D ) + s(x,t,D ), where r(x,t,D )eT'(R") (resp.

s(x,t,DX)eTo(Rn)) is properly supported and its symbol r(x,t,E)

is positively homogeneous of degree 1 and r(x,t,¥) (resp.
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s(x,t,E)) is equal to r(x,0,§) (resp. s(x,0,§)) when (t| =C
for some constant C > O and Re r(x,t,§) # 0 for (x,t)eR™ and
g#0.

(i) If Re r(x,t,E) > 0 for (x,t)eR” and & s O, then there

exist properly supported operators

‘ L(X,t,DX,D )
L o) = € L°(R™; Dg(R), 2R @ ©),
R¥(x,D )
€000, = (8,(x,0), E¥(x,0,)) e 1°(R™ !5 1%(R) @ ¢, Dg(R))

such that

it

i](x,nx)-a(x,nx) I mod I (R™Y; 18(R) @ ¢,18(R) @ ©),

&, (x0)-d,(x,D) = 1 moa L ™(rR*"; oE(r),0E(R)).

3 3
(11) If Re r(x,t,E) < O for (x,t)eR” and & # O, then there

exist properly supported operators

L o(x,0,) = (L(x,t,D,,D,), R(x,D,0) € LOGR™ 5 DE(R) @ ¢,L3(R)),
E,(x,D.)

Smnp=| © 7 e 2, @ o

5(x,D.) = Lo(R* 1, ,gR) c

E'(x,DX)

such that

i

L ,(x,0)-E,(x,D) = T mod LT (R™; 12(R),13(R)),

i

3

i

Ea(x,nx).ia(x,.nx) I mod T °(3™; DE(R) @C,D(R)D C).
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§3. Sketech of the proof of Proposition.
Lemma 1. Let L(x,%) = Lo(x,,g) “+ L1(x,;§), where Lo(x,‘g) =

D, - it* r(x,t,8), L (x,8) = s(x,t,§). Then we have

L,(x,8) € s°(R™ 'xr™; D}g(R) ,L2(R)),
1

L(x,5) €5 X

2
g(R),L (R)).

In particular, we can regard L(x,,t,Dx,Dt) as an element of

LO(R™; DE(R),LZ(R)).
The next lemma is the essential step in our proof of
Proposition.
t
Lemma 2. Let B(x,t,s,f) = — Sk r(x,0,%)d6.
s

(1) When Re r(x,t,§) > O for (x,t)€R", ¥ # O, we define the

kernel K1 (x,t,5,§) by

i exp [B(x,t,s,%)] 0<s <t,
K (%,t,8,8) = { -i exp [B(x,t,s,8)] t<s <0,
0 otherwise.

(ii) When Re r(x,t,%) < 0 for (x,t)€R™, £+ 0, we define the

kernel Kz( x,t,8,8) by

-i exp [B(x,t,s,g)] 0 £t <s,
K (x,t,5,5) = { 1 exp [B(x,t,s,g)] s £t <0,

0 otherwise.

Then for Kj(x,t,s,g) {(j=1,2) we have the following estimates:




1

[
(1) sup ‘S IKj(x,t,s,g)lds o(lgl ™E ), ¥ oo,
t

sup j \Kj(x,t,S,g)ldt o(1%]

5
-0

unifornly when x belongs to any compact

"'W?EF)

1

» g-—"éw,

subset of Rn_l.

0
(2) sup 5 ltlk |Kj(X,vt,S,:§)\dS =
t

-0

]

© ok
sup S | t] IKj(x,t,s,g)ldt

8 ~ 0

uniformly when x belongs to any compact

oClg]™"), § — oo,
oClx|™"), & —> =,

subset of R%!,
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Lemma 2 follows from the following two facts (cf. Treves [4],

Lemma C.1):

(a) There exists a constant CT'> 0

b - sfE+T o ¢ [£EH - G

- 1

for all t-s > O when kezt is odd.

such that

(b) There exists a constant C2 > 0 such that

1615 e - sl g o, |5 - &

for all t-s = O when kez¥ is odd.

Combining Corollary in [4], p. 94 and Lemma 2, we can prove

Lemma 3. Let Re r(x,t,¥) > 0. We define for |§|>1

R"’(X,E):D};(R) —>c,
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E(x,8):C —> D}é(R),

, 12 k
E1O(x,§).L (R) =——> DE(R)’

E{

- »
R (x,P)u = |g|"F f u(t) $Tx, ¢, vat,

1

E;(x,,i)z = |&| Ttk 9 (x,%,t)z,

(- -]
B, (x,8)f = j K,(x,t,85,§)f(s)ds - E‘SR*KH‘,
(-4

respectively, where

t 0o t
‘}’(x,'g,t) = exp [-S ekr(x,e,g)de] / (Sexp [-2( QKRe r(x,08,%)
R . o) -0 0

Then, after having been suitably modified for small %,

L, (x,%)
-1, n=1 k 2
L, (x:8)= € s°(R™'xR™™'; D(R),L5(R) ® ©),
R*(x,%)

1

E]O(x,§)= (E,,(x,%), E;(x,g)) € sO(R* xr™ 1 L3(R)@ ¢,D

and Em(x,ﬁg) is the inverse of .;tm(x,g) for [g|=1.

Lemma L. Let Re r(x,t,§) < 0. We define for |§|=1

R™(x,8):C —> L5(R),

E;(x,g):La(R) —_— C,

z
de} dat

k
E(R))

1
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£, (%,8):L7(R) —> D%‘(R),

by
R7(x,8)z = %(X,E;t)z,
E;(X,§)f = S I(t)‘/'(x g,t)dt,
Lao(x,;)f = Kz(x,t,s,.§) (f(s) - R_E;f(s))ds,
o
respectively, where
| B
t ® t 2
Y(x,5,t) = exp|| 650(x%,8,5)d0 exp | 2| §%Re T(X,H,%)d0| dt
(o] ~00 o] .

Then, after having been suitably modified for small §,

Lo, ®) = (L (x,5), R (x,5) €s°R X5 DE(R) @ ¢,1%(R),

EZO(X’E)
Eo(x5) = es°(R*xr¥ 5 L3(R), (R @ ©)
EZ(x,§)

and Eizo(x,i) is the inverse of ;ﬂao(x,g) for |¥)=1.
By Lemma 3 and Lemma 4 the construction of EEJ(X,DV) (3j=1,2)
in Proposition is formally the same as the construction of a

parametrix of an elliptic operator in the scalar case.
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