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§1. Introduction and preliminaries.

It is the purpose of this talk to outline some elementary
developments toward a theory of vector-valued hyperfunctions.
The motives behind these are two-fold. In the first place
vector-valued hyperfunctions are necessary in applications;

S. Ouchl has already used hyperfunctions of one variable .taking
values in a Banach space [17], and one of the authors (P.D.F.
I.) is trying to develop.a hyperfunctional quantum field theory
which requires many variable hyperfunctions. Secondly, to

look at hyperfunctions with values in locally convex spaces

of some sort is every bit as natural as it is for distributions.
For distributions L. Schwartz himself built up an extensive
vector-valued theory [20,21,22]. Here we will report on the
results we’have obtained in the particularly simple case when
the space of values 1s a Fréchet space (Ion and Kawai [25])

and give notice of some further developments.

The Fréchet values case is simple because one may deduce
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many of the facts required directly from the ordinary scalar
hyperfunction theory using some general nonsense.

To start with we must have holomorphic functions. Here
we will consider for simplicity's sake, only.the case M = R"
imbedded iﬁ its complexification X = Cn; the case of a real
analytic manifold M 1in a complexification X presents no
more difficulties here than usually. Let E be, for the
moment, a quasi-complete separated locally convex topological
vector space. Denote by Ee: the sheaf of germs of smooth
funétions on X with values in E , and by EC7 the sheaf of
germs of E-valued functions holomorphic on X; E@’ is a

subsheaf of %@[20]; A property basic for cohomology theory

is the following.

Theorem 1.1.

The sheaf Eé; is soft.

' s s . . E R R
Proof. This is obvious since E; is fine for the same reason

€ 1is [91.

Next remark that we have the soft Dolbeault resolution

E
of ¥ ; here the Dolbeault complex is defined as usual.

Theorem 1.2.

The complex (EEEO"),ﬁ) is exact.

22992. The proof of this goes exactly 1like that for the scalar
case E = € ; since E 1is quasi-complete so that the closed
convex hull of a compact set in E 1is also compact, one may
use Cauchy's integral formula as usual (ef. Grothendieck

[6] ) to give a Dolbeault-Grothendieck Lemma [9,12].



In fact the vector-valued generalization of Palamodov's

splitting theorem holds.

Theorem 1.3.
On a Stein manifold X the vector-valued Dolbeault complex

Effo’p>(X) splits for p >0 , so for p > 2 Hp(X,E ) = 0.

Proof. Follows directly from Palamodov [18], Prop.5.1. using
Eg/(oap)(x) g@(osp)(x) @ E.

Next we 1list three key theorems of Grothendieck.

Theorem 1.M;

Let u; ¢ Ei-_;,Fi be a topological homomorphism of locally
convex spaces such that uy Ei is dense in Fi’ for i=1,2.
Then ulé§ u, : Elé§ E2——>Flé§ F2 is a topological homomorphism
of the prbjectively completed tensor product Elég E2 onto a
dense subspace of Fléé F2. Further if El and E2 are

metrisable then ulég Uy is actually a surjection.

Proof. This is Grothendieck [8] Chap I, §1, no.2, Prop.3;
the last assertion 1s an immediate consequénce of the Banach

Open Mapping Theorem.

Theorem 1.5.

Let Ei be a locally convex space, and let Fi be a
vector subspace of Ei , for 1i=1,2. If either F1 or F2
is a nuclear.space then the natural linear map of Flé$ F2

A
into ElQD E2 is a monomorphism of topological vector spaces.

Proof. This is Grothendieck [8] Chap.Z, §3, no.l, Prop.10,

Cor,



These two theorems may be applied to yield the following,
which i1s stated in categorical language with an eye to its

applications.

Theorem:1.6.

Consider the category of Fréchet nuclear spaces where the
morphisms are continuous linear maps, and also the category
of projectively completed tensor products of Fréchet spaces
with metrisable locally convex spaces, where the morphisms are
tensor products of a continuous linear map on the Fréchet factor
with the identity on the second. factor. Let F Dbe a metrisable
locally convex space. Then E —>E]é§ F , and for morphisms
11—91165 1 , defines a covariant functor from the first mentioned

category to the second.. This functor is exact.

Proof.  This theorem is essentially in Grothendieck [T7], or

again is a variant of Bungart [2] Thm. 5.3.



§2. Pure codimensionality and the hyperfunction sheaf Edg

It is of course as a result of the pure codiménsionality
of R" with respect to the sheaf %9— that one may define
vector-valued hyperfunctions [19]. To get this as a deduction
from the scalar case using the tensor product properties just
mentioned, we shall have to assume E is Fréchet. In order
to use Thm. 1.4 and thus Thm. 1.6, E has to be metrisable,
and in order to be a good space of values for holomorphic
func?ions E must be quasi-complete. These two assumptions
together imply E 1is Fréchet, [23] Prop. 34.3. First we need
two generalizations of results fundamental to the Harvey-Komatsu

development of Sato's hyperfunction theory [10,11,13,14].

Theorem 2.1. (Oka-Cartan Theorem B )

If © is a Stein submanifold of €" and E is a Fréchet
space, then, for p > 1, Hp(Q, E@) = 0.
- Proof. We can prove this as in the scalar case by use of the
Dolbeault‘resolution; it is arspecial case of Bishop [1] Thm.
4 or Bungart [2] Thm. B. The authors are grateful to Sunao
Ouchi who pointed out a paper of H.Fujimoto in which references

to these last papers were found.

Theorem 2.2. (Malgrange)

Let V Dbe an open set in ¢

and E a Fréchet space,
then, for p > n, Hp(V, EG) = 0.

Proof. This follows form Malgrange's scalar theorem [15] and
Thm, 1.6 applied to the Dolbeault complex, which by Thm. 1.1

may be used to calculate the cohomology.

This leads us to
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Theorem 2.3.
R?  is purely n-codimensional with respect to the sheaf
EG over €.
Proof. As in the scalar case, by the excision theorem and
Grauert's Neighbourhood Theorem [5, 24], it is enough to show,
Hpn (v, EO) =0 for p#n and V a bounded and Stein open
RavV '
set. Using then the long exact sequence of relative cohomology
together with Thm. 2.1 and 2.2, and noting thaﬁ, gsince the
7 E<Dolbeault resolution may be used to calculate the cohomology,

one may get information from the scalar result by tensoring

by & E, the theorem will follow.

So if E 1is a Frechet space, the space of E-valued hyperfunctions

on an open set Q 1in R™ is defined to be

“8) = 1, &
where V 1is an open set in ch containing Q as a closed
set. By the excision theorem this definition does not depend
on what particular complex neighbourhood V of @ is chosén.

We can also prove the analogue of Sato's theorem.

Theorem 2.4.

The assignments Q ~» EB(Q) for § open in R® and
the natural restriction maps define a sheaf. This sheaf, ?B,
is flabby.
Proof. This is an immediate consequence as suggested by Sato
[19] of Thm. 2.4 and the facts of general sheaf theory given

in Komatsu [13] Thm. 1.8.



7

§3. Hyperfunctions as boundary values. Embedding of distributions.

Because of the analdgﬁe of the Oka-Cartan theorem B,
E-valued hyperfunctions may'be viewed as boundary values of
holomorphic functions in the usual way. In addition from this
follows one way of seeing that the distributions may be embedded

in the hyperfunctions.

Theorem 3.1.

The distributions ©9'(R?) may be embedded in the hyper-
functions EB(RH).
"~ Proof. This foliows from the representation of hyperfunctions
as the sum of 'boundary values' of functions holomorphic in
the tubes defined by the 21 orthants, and the theorem of
Ehrenpreis [3,41 which implies every distribution has such a
representation. In fact the analogue of this result holds for
the vector-valued version of any analytically uniform space

verifying the conditions of Ehrenpreis'! theorem.
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§4, Holomorphic hyperfunctions.
As will by now be obvious most of the Harvey-Komatsu

development of the elements of Sato's theory of hyperfunctions

generalires simply to the case of values in a Fréchet space

E. For instance:

Theorem 4.1.
Let R, = ¢l xR x ¢ for j=1,-++,n and let R(P)=

N and for @ # JC{1l,*++,n} define R(J) =ﬂ{Rj;j6J}.

C
Then if r 1s the cardinality of J
, R(J) 1is purely r-codimensional with respect

to the sheaf © on ¢€". TFurther, if one writes "BJO -;Kr(J)(

then for p > 0 and V a Stein open set in ¢", HP(V,

Erge)

Proof. This can be proven by mimidﬁng the scalar proof of
Komatsu [14], just adding presuperscript E where necessaryQ

This theorem has as a specilal case Thm.2.3 (n = r) and
the proof just indicated is in a sense more elementary than
that mentioned before.

Heuristically EEHG’ is.the sheaf of germs of functions
which are hyperfunctional in the J variables and holomorphic
in the rest ; it might be written as G B(Rr).

The proof of Martineau's theorem on the independence of
boundary values from the coordinate system which is given by
Komatsu [14] does not simply generalize,for the complexes
involved, which come from the canonical flabby resolution of
some sheaves, do not consist of Fréchet spaces; the statement

however does.



§5. Microfunctions. Related matters-.

The elementary theory of microfunctions generalizes in
the natural manner too [27,28]. In the first place all the
geometry involved is unchanged and aside from that the elementary
théory only involves the basic facts about hyperfunctions and
\.genefal resulfs in sheaf theory. As far as the flabbiness of
EC,ris concerned it seems that a proof of this may be constructed
along the‘lineé of Kashiwara's original procf which is sketched
’in>[26]. The use of pseudodifferential operators presents
some difficulties [28].

S6 a great deal generalizes easily if E is a Frechet
space. Wénhope to extend the theory to ﬁore'general guasi-
complete ' E. . Another question that is natural is how far one
may~continue with Vector-vaiued hypérfunctions on totally reél
subsets in the manner of Harvey and Wells [11,24]. The above
topics will be treated in our next'pépéf.

A related matter is the theory of vectorisations of coherent
analytic sheaves?: This was in fact thé»concérn of both Bishop
[1] and Bungart [2] who showed that almost all the standard
results extended to the case of By - E®YF (avec abus de notation).
We dan add that this is also,trﬁe of Siu's‘completion of

Malgrange's Vanishing Theorem [28].
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