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THE LIFTINGS OF PRODUCT FORM ON MEASURE SPACES

by Kiyoshi Murakami

ABSTRACT
In this paper we shall study about the foilowing concept.
Let (X, By, ux) and (Y,}gy, uy) be tow measure spaces with lift-
ings Px and Py respectively. We denote by (Z, By v,z) the prod-
uct measure space of X and Y; Now we call a lifting A, on Z of

product form Pxxfi’r if it satisfies the following conditions

PZ(AXB) = %(A)X,OY(-B) for every A€@, and Be@.

We shall show some properties the 1iftings of product form and

some results connected with the strong lifting property.
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§0. Introduction

The thepry of lifting on measure spaces has been deveroped
for the last fifteen years. In this paper we consider the lift-
ings on product measure spaces. In §] we write notations and pre-
liminary results which are used in the following sections. In §2
we éive the definitions and the characterizations of the lifting.
of product form. 1In §3 we show some necessarily and sufficient
conditions of the existence of the lifting of product form.

The author wishes to express his hearty thanks to Professor
H;Umegaki for many kind suggestions and advices in %he coures of

preparing the present paper.

§ {. Preliminaries
Recently A, and C., Ionescu Tulcea have shown many results
~ about the lifting on méasure spaces., We shall write several fun=-
damental notations and theorems in their book [I.T] (Topics in
the theory of iifting). which play many important role in this
paper.

Let (X,8B, u) be measure space and we use the following no-
tations., B,= [AeBs u(A) oo}, w¥= {Aews n(A)> 0}, BE= 8B n B* and
AQ;: {Ae@s u(A) = 0J. We denote by Mg(x) the algebra of all bb-
unde real-valued B-measurable functions on X, When for f, gemg(x)
denote by £ 2 g iff {xeX: f(x)%g(x)y €Ng . Also for A,Beg
denote by A = B iff AAB e/\fé .

Let P be a mapping of Mg(x) into itself and consider the

following conditions,

(1) P(f) =1,

(11) f=g implies pP(f)= &g),
(I1I) pP(1) =1,

(IV) fz 0 implies P(£)Z o0,
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(V) P(E +g) = &A(£) + BAE),

(VI) P(fg) = A(£)P(g).
We call P is a (linear) lifting of Mg(x) if it satisfies the co--
nditions ((I) - (V)) (I) - (VI).

Let 6 be a mapping of B into itself and consider the follo-

wing conditions,

(1" 6(A) = A,

(11) ASB implies 6(A)= 8(B),
(111°) 6(X) =X and 8(¢) = ¢,
(Iv) Y B(ANB) =B(A)N B(B),

(v 6(AUB) = B(A)U 6(B).

We call § is a lower density of 8 if it satisfies the conditions
{I') - (IV) and a 1lifting of B if it satisfies the conditions (I’)
- (V). There exists a one-to-one correspondence between the li-
ftings of Mg(;c) and the liftings of ¥ which are-connected with
the epuations.

(L) P(lA) = lQ(A) for every A€,
where 1A denotes the characteristic function_ of the set A ([I.T],
Ch.3). So we use the same symbol P for a lifting of Mg’(x) and a
lifting of B which are connected with the equations (L) and say
it a 1lifting on X. When X is a topological space with a topolo-
gy 7, we denote by C;(X,TT) the algebra of all bounded real-valu-
ed Y-continuous functions on X. A (linear)lifting @ of M‘;'(X)
is called strong on (X,7) if c;(x,a’)cmg(x) and it satisfies the
following conditions, |
A (VII) P(f)y=Ff  for every fe C‘{{(Xﬁ) .
We shall introduce some results given in [I.T]1,[2],[4] and [4]
which are used throughout this paper. From now on we shall ass-
ume that every measure space (X,8,u) is complete, semi-finite

localizable measure space and B is-identical with - the o-algebra
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4 .
of all M-measurable subsets of X. We say that (X,8B,u) has the
direct sum property if there‘ exists a disjoiﬁt family {'X‘}LeI in
BE such fhat X= Ute 7 X\ and for every Ae g, there exists teIl such
that AnX, €eBX, It was proved that (X,®,u) has the direct sun;
property iff 1F:h'ere" exists a lifting on X ([I.7] and [6]). A
derivation basis on X is a family %:{?(x)}xGX, where for xeX
¥(x) is a filter basis on B#*. For AegB and xeX ‘define

(D) D(A,%) (x) = Lin w(ANB)/u(B)
if the limit of the right side exists. A derevation basis ¥ is

said to be-weak if for every Ae®B the set Né, belongs to Mg, where

A
Ny,

D(A,%)(x) % lA(x). Let ¥ be a weak derivation basis on X, For

is the set of all xeX such that D(A,%)(x) isn't defined or

Aen, put B4(A) ={_xieXs D(A,¥)(x) = 13, then 0 is a lower density
of B (VUI-] and [5]).’ Let L‘E(X) = M°R°(X)/g, B(X) = B/= and denote by
f af (reSpectiveiy A » A) the canonical mapping of MR(X) onto
L‘E(X) (respectively B onto B(X)). Since X is 1ocalizable, B(X)
is a complete Boolean algebra and by A = iA it is isomorphic to
the Boolean algebra of all idemportents in L;(X) . Denote by X
the Stone representation space of B(X) i.e. X is the set of all
maximal ideals of B(X) with a totally and extremally disconnect=
ed compact hausdorff topology and B(X) is isomorphic to the Boo-
lean algebra of all clopen subsets of X. Since CR(SE) and LE(X)
are generated by the Boolean algebra of all their idemportents,
‘CR(;() is isomorphic to L‘;(X) and hence X is also the Gelfand re-
presentation space of L"R°(X). It was proved that a 1ifting on X
induces a mapping from X into X ([1I.7] and [2]). Let @ be a li-
fting on X. For xe€X, put J,(x) ={AeB(X) s xe P(A)c}. It is easy
to show that Jp(x)ei. We note that for xeX and i‘eL‘}’{(x) put
xx(f) = P(f)(x) then Xy is a character of L;;(x) and the corres-
ponding maximal ideal {f‘eL‘E(X)’ : Xx(i‘) =0} is generated by {1'A s
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Aejp(x)}. Now we define a mapping - J,(-) from X into i. Denote
by 7,; the weak topology induced by J,(-). Since X has a base
{E(A) 1+ AcB}, where E(A) = {#eX : Aes} and J,(E(A®))=F(A) % has
a 't;ase {p(A) s AeB}., It was shown that 7,c¥3, cg(x.‘:/;,) %{P(f) :
feMZ(X)} and CL/X,%) is isomorphic to L';(X) by £ +f ([I.7],Ch.5).
Next we consider a mapping from X into X and construct a 1lifting

from it under suitable conditions.

LEMMA 1. Let J(-) be a mapping from X into X, For Ae®,
put F,(4) = {xeX s Acej(x)}. Then # is a mapping from B into
P‘(X) , where P(X) is a family of all subsets of X, and 4 satis-
fies the ‘conditi'ons (IT') = (V") of a lifting.

Proof., It is clear that 4 satifies (II’) - (IV). By (IV)
we have A(A)U £(B)c 4(AUB). If xefp(AUB) then (AI}B)°‘= AS
nﬁcéj(x). Since J(x) is .maximal, A% f(x) or B%_f(x) and we have
théh"xe,g(A) or'xeg(B) . So Fj sati.sfies (v).

J ' q.e.d.

The ‘above lemma implies the following.‘ If 4 satisfies the

condition (I’) then A is a lifting on X. We shall give a condi-

PROPOSITION 1, Let 6 be a lower density of 3. For xe¢X,
put Jp(x) ={AeB(X) 1 xe G(Ac)} then f(x) is a proper ideal of
B(X). Let NyoeAg, If J(x)> Jyp(x) for every xeX - N, then P(A) -
Noc_’ﬂp(A) for every Ae®B. In this case /A satisfies the condition
(1.

Proof. It is clear that Jp(x) is a proper ideal of B(X) .
Now we assume J(-) satisfies the conditions. If x H(A) - N,
then A®¢ f(x) #(x) and hence x€5(A). So H(A) = Noc 4(A)
for every AcB. Since A(A) = A(A%)% 6(a%)CU N, and A= §(A) -

No=0(a%)°Y N, we have Q(4) =4,
X ’ e q.e,d.
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By Zorn's lemma every proper ideal of B(X) is contained in
a maximal ideal, the existence of a lower density of B implies
the existence of a mapping from X into X which satisfies the co-
nditions of above proposition, i.e. the existence of a lower de-

nsity of B8 implies the existence of a 1lifting.

REMARK. We note that {l’A i Ae ﬂe(x)} generates a closed pro-
per ideal of Lz(x) and it coincides with Iy in [I.T],Ch.5, Prop-
ositi(;n >2. Moreover if J(-) and N,eMg is same in above propos~
ition then for xeX - N, {l'A: Aefd(x)} generates a maximal ideal
of L;’(X) and the character 'Xx of L;(X) corresponding to it vani-
shes on J,., Consequently without the topology ¢, ([I.T],Ch.5),

we can construct same lifting in [I,T],Ch.5, Proposition 2,

$2, The lifting of product form

Let (X, By, #y) and (Y,By. p,y) be measure spaces with 1ift-
ings Py and py
such that Z=Xx Y and B, is the ¢-algebra of all uxx uy-measura-

respectively. Let (Z.Bz, u.z) be a measure space

ble subsets of Z, where oy X p‘y is the product measure of Py and
p’y in the sence of [1],Ch.6 and B, is the cortracted measure of

N . . . 2
Hox uy which is the extension of u x My ong,, i.e.

B, (A) = sup {p;,?uy(B) 1 BeB,, BCA and (xx\py(B) Coo} ,
In the following we shall write X,Y and Z instead of (X,}sx, p.x) ,
and (Y,'By, p,y) and (2,3,, p.z) respectively. We note if X and Y
are o-finite then Z is the usual completion of the product meas-
ure space (XxY, By X8, p‘x""’y) .

LEMMA 2. 2 is strictly localizable i.e. a semi-finite and

complete measure space with the direct sum property.

Proof. The semi-finiteness and completeness follows from
the construction, Since there exist 1liftings on X and ¥, X and
Y have the direct sum Property. Let {XJ e (respectively {YK}KH()
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be a disjoint family in ‘@Xg* (respectively TBy"’g) by which the dir-

ect sum property is satisfied. It is clear that {XLXYK}(‘_ K)eIxK
’

: e 1o s _J s
is a disjoint family in )32% and Z‘(L,K)eIXK Xy %Y. For Aéhfég
there exists Ae 6", and Nefg, such that AC AUN, A/AN=¢ and
W, (4) =p,xxpy(A’). If w,(AN(XxY)) =0 for every (\,K)e IxK
then n_x p,y(A’n (XaxY)) =0 for every (\,K)¢IxK. From the defini-

tion of w xu, we have then p_x p,y(A’) = 0. This contradicts to

y
"y -

uxxuy(A )=u,(A) >0,

qoeodc

This lemma implies that there always exist liftings on 2.

So we consider the following definition,

DEFINITION. A lifting @, on Z is said to be of product
form Pxxﬂy if it satisfies the following conditions,

(P) PZ(A&B) = PX(A)X Py(B) for every AeB, and Be)s'y.

We shall show some characterizations of the lifting of product
form Pxx Py.

THEOREM . Let Pyt Py and Pz be liftings on X, Y and Z res-
"pectively. Then for these ﬂx, 'ay and Pz the following conditions
are equivalent to each others. V
i) PZ is of product form Pxx,Oy,

ii) PZ(AXY)C FX(A)xY and PZ(XXB)C Xxﬁy(B) for AeB, and Bebgy,
iii) PX(A)X YcPZ(AxY) and XXPy(B)c: PZ(XXB) for A<€B, and Beny,
iv) .?,;*xygc 7& where 9,’,‘;(9'@ means the product topology on 2

of % and Jg,

v) Ay is strong on (Z,Zg(x?p,),

vi) P (£x1) = A (£)X1 and A(1xg) =1xpy(g) for feMg(X) and
geMp(Y).

Proof, i) = ii) and i) 3 iii) are obvious. ii) 5 i) Since

Ax?: (AXY)“(XXB) we have PZ(AXB)C px(A)XPy(B). Since pz(cc) =
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c ¢ c c c c
/DZ(C) and (AXB)" = (A™XY)n(XxB~) we have 4,(AxB) C(@((A)Xﬂy(B)) .
So PZ(AxB) = PX(A)X ,Oy(B). iii) <+ i) follows similarly from the
case ii) 4 i). Thus it is sufficient to prove i) = iv) > v) =
vi) + ii). i) » iv) The topologies % and 7% have bases {A(A) s
AeBx’) and {,Oy(B) sBeBy} respectively. So we can take as a base
of %x %, the family {PX(A)xﬂy(B) sA(-‘r,‘xand BQGY} . From i) PX(A)X
/0y(B) = ﬂz(AxB) and FZ(AXB)' is contained in 75, we have then
TxIk €T o iv) s V) %xJx CYp implies C;(Z,%x%:, Ye CI"{(Z.%).
Since c‘g(z.‘y;i) ={4,(£) + £eNZ(2)} and A, (4 (f)) = A (£f), P, is st-
rong on (2, % x%, ). V) =+vi) Since A(f)x1 is Ja *Tg, ~continu-
ous, we have pz(fxl) = ﬁz(}?x(ﬂ_)xl) = Fx(f)x 1. Similarly ﬂz(lxg)
= l)(/oyb(g). vi) < ii) /az(lAXl) ==/0x(lA)Xl implies fz(AXY) =,0x(A)
XY, and A,(1x1y) = 1"%(13) implies A,(XxB) = xxpy(B).

Q.E.D.

This theorem is similar to {I.7],Ch.5,Th.3 but to gether
with its proof this is more simplified., We note that CaRa(Z,j,’,,, xy&)
is isomorphic to L‘;{'(X)@)\L‘g(Y) , where A is the least cross norm,

and also isomorphic to a closed subalgebra of L‘g(Z) by £ & f,

EXAMPLES. 1) Either X or Y is purely atomic, i,e. every
measurable set of positive measure contains an atom, then there
exists a 1lifting of product form Pxx,ﬂy for every pair of liftings

PxonXandPyonY.

2) Let X=Y be the ordinary Lebesgue measure space of R.
Then Z becomes the ordinary Lebesgue measure space of K. For
X€R, let %(x) be the filter basis consisting of the sections of
the family {I s bounded open interval in R and x¢I}J. For (x,y)e
RY let %,(x,y) be the filter basis consisting of the sections of
the family{Ix'J t+ I and J are bounded open intervals in R such

that xeI and yeJ}. Then %= {¥(x)}, g (respectively F,= {%(2)}
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zeR*) is a weak derivation basis in R (respectively R*)([31]).
Put Jg(x) = {AeB(R) : D(A,%)(x) = 0} and Jg(2) ={AeB(R*) + D(A,%)
(z) =03}. It is easy to show that Jg(x)= Ja(x) and Lg(z) = Ja‘(z)
So Jq,;(x) and j.,ﬁ(z) are proper ideals »of B(R) and |B(R*) respecti-
vely. LetJ(:) be a mapping from R into K such that Jx)=2 J%‘;(x)
for every xeR and A4 be the lifting on R defined by PL(A) = {xeR
A% 4(x)}. We shall show the existence of a 1lifting of product

form G xFA.

" LEMMA 3. For (x,y)eR*denote by J,((x,¥)) the ideal of ‘B(R?)
 generated by J(x)x R, Rx4(y) and Jq"((x,y)). Then J((x,y)) is

proper.

Proof, If J,((x,y)) isn't proper then there exist AE.Q(X).
Be g(y) and (‘:c—]a((x,y)) such that R*= (AxR)U(RXB)UC. Consequ-
ently A°xB% ¢ and this implies Acx'Bcejg((x,y)) From the defin-
ition we have D(Ach?,%)((x y)) = ﬁlm u,_((A%(B )n(IxJ))/p.(IxJ)
g}{m uI(AnI) iy (Bpnﬂ)/p.,gl) w(J) = 0. So D(A® %) (x) = 0 or p(B° %)
(y)=0. If D(AS , % Xx) =0 then A G.J (x). This contradicts to
'Aq,q(x) since f(x) is proper. Similarly D(Bc,ﬁ)(y) = 0 implies
a contradiction.
q.e.d.
Let ¢(-) be a mapping from R* into R* such that J(z)> J,(2)
for every ze¢R. Put 2(A) = {zeR*: [\ce-J(z)} then £ is a 1lifting
on R%, Fof Aeg, and xe P(A), Acheﬂi(x)xﬁcj((x,y)) for every
yeR, so (x,y)e P(AXR) for every yeR. This implies that A,(A)XR
C P(AXR) for every AeB,. Similarly RXA(B)c P(RXB) fbr every
Be?%,. By Theorem 1 we conclude £ is of product form 4 x 4.

§3. The conditions of the existence of liftings of product form

In §2 we have shown that a 1ifting of product form ,Dxx Py is

strong-on (Z,?é(x%) » 80 the existence of a lifting of product
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form A x ,oy is equivalent to the existence of a strong lifting on
(Z,?&X%’). Therefore some results given in [I.T], [4] and [5]
are useful to show the conditions of the existence of a lifting
of product form. Por this we give a new definition. Let (X,B,u)
be a measure space and X is a topological space with a topology
. A (linear)lifting 2 of Mg’(X) is called almost strong on (X,Y)
if C?(X,?)C.Mg(x) and there exists N,eAMz such that |
(VII)) A(f)=f on X - N, for every fe C;’(X,?).

Let X, Y, 2, 4, and ,Oy be same in 2. Then we prove;

THEOREM 2. The following statements are equivalent to each
others,
i) There exists a l1ifting on 2 of product form 2 x ,oy,
ii) There exists an almost strong lifting on (2,7 x%) ,
iii) There exists an almost strong linear lifting on (2,7 x pr),
iv) There exists a lower density 6 of Bz such that for some N,
Mg, (P (A)xY) - Noc B(AXY) and (XX4,(B)) = NoC B(XxB) for
every Ae‘gx and Be%.ﬂ
v) There exists a weak derivation basis % on Z such,that for
some NoeNg,, D(AXY,%) = lﬂx(A)xY and D(XXB,%) = lx)(@(B) on Z -
N, for every AeB, and BeBy.

Proof. i) = ii) = iii) is obvious., 1iii) » iv) Let Q, de
an almost strong linear lifting on (Z,?,bxx%) and Noéjw/jgz such
that A,(f)=f on 2 - N, for every fe C5(2,%Xx%)). For AcE, put
B(A) ={zez s A,(1,)(2) =17 then b is a lower density of g, ([I.
‘T]). Since 1o )% 1 is % * g -continuous we have Locaxy) = Pz
(1A7~L) = Pz(px(lA)xl) = ﬂx(lA)\(l on Z = N, for every Ae¢®. Co-
nsequently (PX(A)x Y) - Ny O(AxY) for every Aex, . Similarly
(Xx py(B)) - Noc B(XxB) for every Bezey. iv) -fi) Let & be a

lower density of B, which satisfies the conditions in iv). For

—9.—



11
zeN, denote by J(z) the ideal of IB(Z) generated by {AXxY, XXB1
z € ,Ox(Ac)XY and zeXxPy(Bc)}. Let J(-) be a mapping from Z in-
to Z such that J (z)2Jy(z) for every zeZ - Ny and J(z)> f(2)
for every zeN,. ‘Then by Proposition 1 4 is a 1lifting on Z and
for every Ceb3Z g(c) - Noc@,('c). For A€B, and zs(ﬂx(A)x Y) NN,
“we have ACx f(eﬂfz)cj(z) and then z€ §(AxY). Consequently PX(A)
*Yc {(AxY) for every Aep,. Similarly Xxpy(B)C@(XxB) for eve-‘
ry BeBy. By Theorem 1 /% is a 1ifting of product form Pxx ,Oy.
i) 2 v) Let ,OZ be a 1lifting on Z of product form Pxx,oy. Put N,
= (U(PZ(A) : AGBZZ;‘})C then NoeNg . For zeNC denote by %,(z) the
' filter basis consisting of the sections of the family {‘OZ(A) 1 z€
A, (A) and A€ %} and for zeN, denote by %(z) an arbitrary fil-
ter basis on {,DZ(A) : AEEL?}' Now for Aexgz* and ze PZ(A) - N
there exists Co€B,% such ze /-7Z(Co). Since the section %t = {Pz-(A
| Nnc): ze,oz(AnG') and Gcécy belongs to Fo(z) and p,Z(AﬂC)/p.Z(C) =
1 for every Cexd, D(A,%)(z) =1 cn ,OZ(A) - Ng. Similarly D(Ac.":'r;',)
(z)=1 on 2(A°) - N, and hence D(4,%)(2z) = 1 - D(45%,)(2) =0 onm
A,(A°) - N,. We have then D(A,%)(z) = lp(ay °n 2 = No. This
implies N% e—)@ and therefor %, is weak, Moreover it satisfies
the conditions in v). Finally we shall prove v) 3 iv). Let %
be a derivation basis on Z which satisfies the conditions in v).
Let 9$ be the lower density of B, defined in§l, For Aeg, and -
ze (A (A)xY) - N, D(AXY,%)(2) = 1, so z& B (AxY). We have then
(P (A)xY) - NoC 9$(A ¥Y). Similarly (Xxpy(B\) «“ NoZ Q,h(XXB).
Q.E.D.
We shall give some definitions and results for another con-
ditions of the existencev of a 1lifting of producf; form. Let (X,
B,u) be a measure spce, We denote by 330 the ¢-ring of all o¢-fi-
nite measurable subsets of X. For Aea—j“ denote by (A,?SsnA.'}l]A)

the measure space with og-algebra BNA = ]BNnA s Be®) and the mea-
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sure p(A(B) = u(B) for Be BNA. It is clear that ¥ N A is ident-
ical to the o-algebra of all W|y-measurable subsets of A and |,
is semi-finite., Since B(A) is isomorphic to IB(X)N A, B(A) is
complete and A is localizable. Now let X, Y and Z be same in §2,

- We have then Bz ={AcZ: AN (ExF)eBZ for every Eelgco and Fet%/o
and NGNBZ iff Nn(ExF)é){Bz for every EeBxc and FeByo. Moreover
(EXF.BZA ExF, “zlExF) = (EXF,W. m) for every E€
on and Febzyo. where (EXF,W, W) is the complet-
ion of the uswal product measure space of (E,anE, p’xlE) and (F,
BynF. uyIF)' Let (X;B,n) and (X, 8,1 ) be measure spaces. A ma-
pping §}from X onto X’ is called non-singular when ¥ is invertible
bi-measurable and for Nep NeM iff"§(N)v(—/\‘/B;_ Since non-singular
mapping preserves o-finiteness we have the following by above

statements.,

LEMMA 4., Let X, X', Y and Y'be measure spaces and 3, (resp-
ectively §y) be a non-singular mapping from X onto X’(respectiv-
ly Y onto Y’).‘ Let Z (respectively Z') be the product measure
space of X and Y (respectively X and Y'), which is constracted
in §2., Put gz((x,y))z- (ix(x),'iy(y)) for (x,y)eZ then ¥, is a

non-singular mapping from Z onto Z/

DEFINITION, Let X and X' be measure spaces with liftings Px
and p}’c respectively, We call Px and Px' are weakly equivalent
and write /Ox.':(ox' when there exist .Nxe)fo. N)'{e}ﬁ;;( and a non-sin-
gular mapping § from N; onto N}'(csuch that

_ - - - - N’

(W.E)  FT(B(A) - N) = PL(F(A - N)) - N for every AcB.

THEOREM 3. Let X, Y, Z, Px and ,Oy be same in §2. Let X’
and Y' be measure spaces with liftings £, and /)y' such that {?x{.‘-

p]; and py-:- Py’ respectively., Let Z/ be the product measure spa-

ce of X'and Y constracted like as 2, If there exists a lifting

-1l -
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p, on Z of product form A, x ey then there exists a lifting ,DZ’ on

Z’ of product form ,Oxx,ﬂy and 4 ~ @,.

Proof. Let N & N, N, eNg, Nye )@y. N}’,eNB’y, §, and iy
be sets and mappings by which A = p)’( and py: ,03’, are defined.
In the following denote by N, (respectively N;) instead of (N;X
N ;-)c (respectively (N;ccx N}/,c)c) . We have then N, €z and N € Mg,
Put $((x,y)) = (g, (x), §y(y)) for (x,y)e NZC then by Lemma 4 § is
a non-singular mapping from Nzc onto N;c. For z’e N; denote by
J(z’) the maximal ideal in B(2’) which contains the family {(A'X
¥, (X'xB") s ze p);(A'c)xY and z’e X'x,o;(B'c)}. For C’eB&'put p.(c)
= E(PZ(E’(C'- N,)) - N)U{zeN; s ¢'% £(2)}. It is easy to show
that A is a lifting on 2’ of product form A x py’ and £, >~ £,

Q.E.D.

To show the corollaly of this theorm and the following the=-
orem we introduce the following notations. Let (X,®8B, u) be a
measure space with a lifting A. For Ae®B* we denote by {Pl} the
family of all liftings on (A,804, p.}A) such that if P'e{P[A} then
P(BIN A=P(B)N A for every BeBNA, It is clear that for A, BeB*
such that A=B, we have A =f for every Ae{F} and Aelfl}.

We note that {P|} % ¢ because for BeBNA put A(B) = (P(B)nA) U]
X€ Anp'(A)c ' ﬁcej} , where / is an arbitrary but fixed maximal
ideal of B(A), then p%e{P)}. Moreover if Ac P(A) then {g|,} is
singleton and in this case we write it Ply. When there is no am-

biguity we shall write A instead of (4,BnA, Bla)

COROLLARY. Let X, Y, Z, ,OX and F’y be same in §2. For Ae‘ﬁx*
and Be“ﬁy* let PA and PB be 1liftings on A and B respectively. 1I¥
Ppe{ly,y and PBG{PY]B} and there exists a 1ifting £, on Z of
product form Pxxﬂy then there exists a lifting 'oAxB on AXB

of product form p,x P, and (OAxBé{PzIAxB}.

# 12 -
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| Proof. Since P.Af_\ PX]&(A)' and ,OBQ’,%le(B)-. it is enough to
show that there existsa 1lifting on ,OX(A)X ,Oy(B) of product form
,Oxl&(A)x Py}@(B)’- It is clear that pzl&(A)XPY(B) = ’oz‘/’,_(AxB) is
the desirous lifting on [OX(A)X Py(‘»B) .

q.e.d.
Let (X,B, u) be a measure space with a lifting A. A sub-

family {X{}, ;CB is called p-dence if X\AXyeMj for L41 and for
every AeWB¥ there exists 1eI such that ANX en*, If 1Xi} LeT 18
p~dence then {P(Xl)}lal is also p-dence., Moreover put N= (gix\ )c
then NeM;and for A, Bex3 A=B iff ANX = BnXy for every¢I.

THEOREM 4., Let X, Y, Z, ,Ox and ﬂy be same in §2, If there
exists a p, -dence family {X,_}LeI (respectivery wy-dence family
A KeK) such that for every L ¢I there exists a 1lifting A on X,
which satisfies Ple{le X\} (respectively for every Xé¢K there exi-
sts a 1ifting A on K, which satisfies Ace {£)y]) and if there
existsg 1ifting £, x, on X\xY of product form Ax g . Then there
exists a lifting 2, on Z of product form@cxpyand Paw) e{ﬁzlxlxd

Proof. By the assumption, Theorem 3 and statements follow-

ing to it there exists a lifting A ,, on &(Xy X/%,(Y,‘) of produ-
= (( U c
ct form /| Ax) py‘ £(%0) " Put N ((1‘54. B (X Ix( KGK@,(YK))) then N
GNBZ. Now for every zeN, we denote by J(z) the maximal ideal
of B(Z) which contains the family { AxY, XxB: ze@(Ac)xY and z
(o] ]

GX._XPy(B )} . For Aeg,, put /A (A) =(\,1£)Je1xKIDLL\M(An (P (X)x Py(Yx)))
U {zeN3s Acej(z)s. then £, is a 1ifting on 2 of product form P, x
Py,.and fao € {‘pz] Xux Y}'

' Q.E.D.

;'13"
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