goooboooogn
02360 19750 1-7

On Applying Scott's Logic to Termination Problems

S. ANDO
T. ITO
(Mitsubishi Electric Corp.)

€8 1, Introduction

Scott's logic incorporates a very powerful induction rule called
fixed-point induction which realizes various types of structural
induction in a uniform manner. Termination problems are also
nicely treated in Scott's system as is demonstrated by the typical
examples given in 82, €3, where termination means terimination
under any computation rule which is a fixed-point one (see Manna
1972).

We propose the following method of presentation of termination

problems. Let the domain of computation be such a primitive data
type D as D=SU{UU} : UU $S
VxveS. =syo>x=y
Vxe& UULx
where 'S' is conceived to be the set of well-defined elements"énd:__t
'UU' the undefinedness. Then, wé introduce a recursively &ef’inéd
function ter from D to the data type of truth value TV such as
ter (UU) = UU
ter (x) =true (x # UU)
which is similar to the ‘a' of Milner 1972 but the recursive
definition allows us to exploit the wéll-founde.d structure of D which,
as is shown by Kanayama 1972, is essential in telrm'mation proof.
Under these circumstances the termination of the computation which
is represented by the recursive definition of the function f is
expressed as
A% g (x) & Ax ter (£ (x)
where g is also a recursively-defined function which never takes

value 'false', which reads

"Whenever condition g is satisfied, f terminates,'

g 2, Natural number

The domain of natural number is categorically specified by the

following axious AY (Scott 1969)

1. Ax ((x+1])-1)= Q= x

2. zero (UU) = UU

3. 0-1 f = UU

4, of. \x. if zero (x) then 0 wlse f(x-1)+1 E>\x x

wﬁere '+1' '-1', means the successor and the prodecessor function
respectively, and the predicate 'zero' means that the argument is
zero.

Under these axious, 'ter' is given as follows,

ter == of. Ax, if zero (x) then true else f(x-1)

Efample 1, Addition
+ = of, A\xy, if zero(y) then x else f(x, y-1)+1

Our goal is 4
/V l—» ter(x) & ter(y) I ter(xty)
(where & =)\ xy. if x then y else false.
it is easily obtaind that
x!_; true , y £ true ‘-—x&y Ey I\X&Y E_'_:x
xZy , xE =z b xCy&z)
to which the induction rule is applied with respect to the 'ter' of

ter(y) generating the following two sub -goals.

1. A t—ter(x) & UU ter(xty)
2. /V,kab. ter(a) & t1(b)C)\ab. ter(a+b) ‘-—- ter(x) &Gf zero(y)
Hen 'h"'uej else tl(y-1)) 5 ter(xty)
1, is immediately verified.. 2. is decomposed by the cases rule
with respect to zero(y), into the following.
2.1 AY, \ab. ter(a) & t1(b) E (\ab.ter(a+b), zero(y)=true
_ b Tertxy & true = ter(x)
which s ?mmeo\iad’ely Ver‘i{:\‘eA

-2 -

2.2 N, aab.ter(a) % t4)S hab. ter@th) , zerocy)=false
| F ter(o) & tH-1)E tep (x+§)

which we can prove by letting a and b of the assumption x and y-1
respectively and using modus-ponens rule and transitivity axiom
involving

zero(y) = false }—-ter(x+y) =ter ((x+(y-1))+1)=ter (x+(y-1))

Example 2. Fibonacci fﬁnctidn
Fib(x) = if zero(x) then 1 else if x=1 then 1 else
Fib (x-1) + Fib (x-2) .
(where x=1 is an abbreviation of zero (x-1) and x-2,(x-1)-1.)

We presuppose the termination of + i.e. ter(x) & ter(y)I= ter (x+y)

Let -—-)\x ter (Fib (x)) then,

1§ zerocx then frue else «{l(rl){'hehh’ve else pr)xpc2) C pex)
Our gdal being ter(x) £ p(x) === 1)
subgoal ter(x) = p(x) & p(x4l) is chosen for the reason of induction.

The induction subgbals are
1. FUU(x) = p(x) & p(x+1) which is immediate.
2. tlg)\a.p(a) & p(a+tl)
}- if zero(x) then true else tl(x-1) £ p(x) & p(x+1)
Subgoal 2 is decomposed by the cases rule into the followt '\8 .
2.1 ‘. trueC p(0) & p(l) (case zero(x) '_-_-: true)
2.2 l,.tl(O) E p(l) & p(2) (case x=1=true)
2.3 zero(x) = (x=1)=false, t1E)a. p(a) & p(a+l)
b ti(x-1) & p(x)_& p(x+1)

2.1 and 2.2 is verified by proving

P(0)= p(1) = p(2) = true
To prove 2,3, first we obtain

tl(x-1) &£ p(x-1) & p(x)
by applying x-1 to the assumption,

t1(x-1) & plxtl)
is obtaind from 1) and zero(x)I(x = l)E false ,therefore we obtain,
with definition of &,

tl(x-1) £ p(x-1)&p(x)&p(x+1) C p(x) &p(x+1) Q.E.D

4

Example 3. Ackermans function
Ack = of. \x, \y, if zero(x) then y+l1 else if zero(y) then f(x-1, 1)
else f(x-1, f(x, y—l))
Let p(x, y)‘ =ter (Ack (x,Y)) the:n
p(x, y) = if zero(x) then te:(y) else if zefo(y) then p(x-1, 1)
else p(x-1, Ack(x, y-1))
Our goal is |
B otert) & ter(y) = p(x v)
First we resort to the induction rule with respect to the .'ter' of
ter(x) which generales the following two subgoals
1. | UUR) & tex(y) C plx.v)
2. Mab, tl(a) & ter(b) = p
‘—~ (if zero(x) then true else tl (x-l))& ter(y)v_l_:_ p(x vy)
‘1. is verified immediately
2. is decomposed by the cases rule with respect to zero(x) into
2.1, zero(x)=true ‘-— true & ter(y)T p(0 y) = ter(y)
which is immediately verified, and
2.2 tl(a) & ter(b)= p(a b); zero(x)= false |~ tl(x-1) & ter(y)
C plxy) |
From 2.2 the induction rule with respect to the 'ter' of ter(y)
generates the following.
2.2.1 tl(x-1) & UU(y) & p(x,v)
2.2.2)\ab, tl(a) & ter(b)= p, zero(x)= false, Acd.tl(C-1) &
Ct2(d)C p
\—- t1(x-1) & (if zero(y) then true else tl(y-1) L p(x vy)
2.2.1 is immediate, 2.2.2 is decomposed by the cases rule
with respect to zero(y) into the following 2.2.2.1 and 2.2.2.2,
2.2.2,1
zero(y) = true, zero(x)= false)\ab_tl(a) & ter(b)_r:')
t1(x-1) & treu = p(x vy)
PROOF X a)\b. tl(a) & ter(b) C p"\ tl(x-1) & ter(l) C p(x-1, 1)
zero(x) = false, zero(y) = true ’-— p(x-1, 1)= p(x, v)

By applying modus-ponens and transitivity several times to these,
we can obtain 2.2.2.1
2.2.2.2
zero(y) = zero(x)= false, Aab. tl(a) & ter(b)C p, Acd. tl(c-1) &
t2(d)=p ‘
b= t1(x-1) & t2(y-1) & p(x v)

PROOF
From
M\ab, tl(a) & ter(b) C p,—-tl(x—l) & p(x,y-1)C p(x-1,ack(x,y-1) and
zero(x)=zero(y)={false f— p(x-1, ack(x,y-1))=p(x y) several applications
of modus ponens and transitivity gives
assumptions l"' tl(x-1) & p(x,y-1)C p(x y)
And several application of modus ponens and transitivity to this
and

Ned. tl(e-1) & t2(d) T p | J(’l(7(~|) g T2(y4-)= P(x,.4-1)

~ and the definition of '&' 3}ve S
assumptions }-—tl(x-l) & t2(y-1)C p(x y) Q. E. D

§ 3., List

The axioms of list is similar to that of natural number
1. /\Xky. car(cons (x y))= Xx}gr. x

. Axhy. cdr(cons (x)= Ax\v, ¥

. if atom(x) then car(x) else UU = UU

. if atom(x) then cdr(x) else UUE Uu

atom (NIL) = true

af. \x. (if null(x) then NIL

o o W N

else if atom(x) then x
else cons (f(car(x))f(cdr(x)))=Ax. X
In this case the definition of ter is
ter = af.)\ x. if atom(x) then true

else ‘f(car(x)) & f(cdr(x))

6

Example Primitive Recursive Function of lists
£1(x,y1,...,vk) .
= if atom(x) then g2(x,vyl,...,yk)
else hl(x, fl(car(x), yi,...,vyk), f2(cdr(x), yl,..., yk),
vl,..., yk)
f2(x, yl,...,vk)
= if atom(x) then g2(x,yl,...,yk)
else h2(x, fl(car(x), yl,...,yk), f2(cdr(x), yl,..., yk),
yL..., vk)
From the above definition we can prove the termination of fl and

f2 under the assumption that gl, g2, hl, and h2 terminates.

g 4. Conclusion

Termination of a computation is always equivalent to downward
monotonicity of that computation process with respect to some
«well-founded relation (Y. Kanayama 1972). That is why structural
induction is essential in termination problems, This feature is
also explicit in Floyd-Manna's first-order method because it always
resorts to some axiom scheme of structural induction, say,
mathematical indﬁction in the domain of natural number. The
success of the proof depends totally upon the choice of the well-
founded relation, which is not at all uniform and relies heavily
upon intuition, On the contrary, in our method we may not be
concious of the well-founded strucfﬁre explicitly. It is inplicitly
incorporated in the recursive definitions of conditions on the
arguments., Fixed-point induction with respect to that condition
function automatically generates subgoals which reflects the
well-founded structure that is needed to establish the termination.
Of course, in case very complicated well-founded relation is
involved, some ingenuity is necessary in designing the condition
function. But in any case, our formal frame-work is simple

enough to make the whole reasoning transparent, and helps to

guide our intuition. It is a good candidate for the formalism to be

adopted when trying to mechanize the termination problem.

References
Kleene 1952 Introduc_tion to Metamathematics. North Holland
Scott 1969 A Type-theoretical alternative to Unpublished

Milner 1972 "Implimentatioh and -" proc. of A.C.M
conf, New Mexico

Manna 1972 "Inductive methods - "t“'\e Same as above

Kanayama 1972 "Algebraic Properties of Program'
proc of lst Japan U.S.A computer conf,

7

