goooboooogn
0 2360 19750 111-123

11,

On Data Structures for ManipulatingﬂGraphs and

a New Efficient Program of the Dijkstra Method

for the Shortest Path Problem

(Extended Abstract)

Kohei NOSHITA

(Information Science Laboratories, University of Tokyo)

In this paper data structures for manipulating graphs are
briefly discussed and as their application a new efficient program
of the Dijkstra method for the shortest path problem is presented

with investigations on its computational efficiencies.

Recently many efficient algorithms for graph problems have
been proposed. Most of them are based on the data structures
which facilitate efficient searches and modifications in graphs.
For example see [4] and [6].

A philosophy on data structures for manipulating graphs will
state that in most cases it is efficient to represent incidence
struétures of graphs in computer memories as faithful as possible.
In other words a graph should be represented by list processing
techniques in such a way that searching and modifying some ,
considered objects in a graph should be performed without any
accesses to unrelated objects. Most basic operations such as a
search of outgoing branches from a given node, a search of directly
connected nodes from a given node, a deletion of a given branch
and the like, should be done within constant number of steps not
depending on the sizes of graphs.

Now we present an outline of the data structures for repre-

senting a graph in the programming language Pascal [9].

112

type node = record out, in: record degree: integer;
natural,
reverse: * branchset
end
end;
branch = record from, to: * nodeset;
out, in: record natural,
‘ reverse: t branchset
end
end;
var nodeset : class 512 of node;

branchset : class 1024 of branch;

An oriented graph is mathematically defined as a function
from a set of branches to a set of ordered pairs of nodes. The
function is represented in data of branch type, in each of which
two incident nodes can be selectéd by the selectors "from'" and
"to."

However for practical reasons it 1s convenient to explicitly
represent the in&erse of that function, which is represented in
data of branch type and node type. TFor each node the set of its
outgoing branches is arbitrarily lined up in the linear order.
By the selector "out.natural" the node datum refers to the datum
of the first branch . in that set and by the selector "out.natural"
the branch datum refers to the datum of the next branch in that
set. The last branch datum refers to nil. The selectors
"out.reverse" are used to represent the reverse order of that
set. In other words that set is represented in a two-way list.

As for the set of incoming branches a similar two-way list
is constructed by the selectors "in.natural" and "in.reverse.'

For each node it is recommended to calculate its degree
(the number of outgoing or incoming branches), which is selected
by the selector "degree."

Other related data possibly necessary for each applied
problem may be added in record data of node type and/or branch
type.

The constant numbers 512 and 1024 show the maximum numbers

of data of node type and branch type dynamically allocated by

—2-

113

the standard procedure "alloc" in nodeset and branchset, respec-
tively.

In general it is desirable to take the multiple usage of
memory spaces into consideration.

There may be some applications for which it is convenient
to provide the data for the connection relation between nodes.

It will be easily ascertained that in such a data structure
as described above most useful basic operations for graph
manipulations can be directly done without any loss in time. It
should also be noticed that the required amount of memory spaces
is linearly proportional to the size of the represented graph.

The idea just presented is essentially due to Iri [6],
where (Fortran's) statically allocated arrays are used for

expositions. For further detailed discussions see also [7].

The shortest path algorithm is one of the most important
algorithms in network problems. Many algorithms on this subject
have been studied not only theoretically but also experimentally
[2, 5].

For the problem to find shortest paths from a specified node
(source) to all other nodes, it is well-known that the Dijkstra
algorithm [1] through direct implementation is the most efficient
one in the sense of evaluating the upperbound of computational
steps, provided that every assigned distance between two nodes
is a nonnegative (real) number. This direct method fits well to
such graphs as having dense branches, e.g., complete graphs.
However it is far less efficient for sparse graphs, which occur
quite frequently in practical problems.

Hence many practical algorithms have been devised [2], but
so far no satisfactorily general methods, which efficiently cover
both cases of dense graphs and sparse ones, have been obtained.

We propose a new program which is practically most efficient
to the author's knowledge. The algorithm is so composed in order
to make 1t possible to be parametrized that it coincides with the
direct method as a particular instance, if a given graph is enough
dense. In case of sparse graphs it runs much more efficiently

than the direct method by choosing the appropriate parameters.

114

We shall review the Dijkstra algorithm and some related
matters. Let dij be a distance of real number from node i to
node j in a given graph. Under the condition dij > 0 for any
i and j, the problem is to find all shortest paths from the
source to other nodes. The outline of the Dijkstra algorithm is
shown in the following. Let P and T be subsets of ordered pairs
<i,v>, where i is in the set of all nodes in the graph and v is
a nonnegative real number. We shall use a notation V. for the
associated value of node i. For the sake of simplicity the
suboperations to explicitly obtain the shortest paths during

computations are omitted in the following algorithm.

initialize: P := ¢ ;
» T := {<source,0>} ;
while T # ¢ do

step A: search <m,vm> such that‘vm j_vi fof any
<i,vi> in T
T = T - {<m,vm§} :
P:=PU {<m,vm>} 5
step B: for j such that j is incident from m
and <j,vj> is not in P do
W= Vo + dmj 5
i£_<j,vj> inT
if w < vj
- then replace <j,vj> in T
by <j,w>
end
else T := T U {<j,w}
end
end
end
For the sake of comparative studies two methods will be

roughly explained, both of which have been extensively studied

L2, 8].
T

115

(I) Direct method

This can be directly implemented without any sophisticated
techniques. A one dimensional afray for T with size n (the number
of nodes) should be prepared in the worst case. In step A the
minimum valued node is sequentially searched from the first node
to the last node in that array. In step B the value of the
considered node in that array can be replaced independently of
other nodes, if necessary.
(II) Linear (two-way) liét method

In order to speed up searches in step A the set T is always
linearly sorted with respect to values in the ascending order
from top to bottom in the two-way list. The minimum search only
requires an access to the topmost node in the list. In step B
if the considered node exists in the list, the new position of
that node will be found in the upperpart of the list from the
original position. On the other hand if the considered node is
new, the node will go up looking for its proper position from

bottom toward top.

We now present the new method called "multitree method."
(ITI) Multitree method

In this method the ordered T balanced binary sorting trees
(heaps) are used for partial sortings of T. In a one dimensional
array M, T trees are constructed as shown in Eig. 1 (see the data
structure used in Floyd [3]). The first T words correspond to T
roots of trees, while the last word indicated by A to the last
point of trees, where the natural ordering of points in T trees
is understood according to indices in M. Thus A = 0 means
T = ¢. Note that all T trees have almost equal heights. Each
point (i.e.,‘word in M) in a tree refers to a valued node in T.
For any two points p, q in a tree the value of the node to which
p refers is smaller than or equal to that to which q refers, if
P is located along the route from the root to g.

The program with parameter T for step A and B in the multi-
tree mehtod proceeds as follows. Assume that the necessary

initialization has been completed.

—5-

116

step A: begin

Search a point of index P which refers to the minimum

valued node m among indices from 1 to min {7,A} in M;

T := T - {<m,vm>} ;

P :=P U {<m,vm>} ;

M(pm) := M(A) 4

Change a reference in the node, to which the point of

index A refers, from A to P, 3

A=A -1

ifa>r«

then begin
In order to make the tree with the root of
index P properly sorted, rearrange the tree
from root toward leaf by iteratively comparing
the point and one of its two, or possibly
less, direct descendent points, until the
sorting condition is satisfied, where between
two direct descendent points the point referring
to the node with not larger value than that of
the node to which the other point refers should
be chosen

end

end;

step B: for j such that [§ is incident from m to which

the point of index P, refers]

/A [<j,v> & P for any v]

do begin

w::=v_ +d. ;
m m]
if [<j,v> ¢ T for any v]

V [<j,v> & T for some v A\w < Vj]

vj =Wy
if <j,v> & T for any v
A=A+ 1
M(X) = 3
Set a reference in node j to refer to X
P = A
end

117

else p:= index of the point referring to j ;

In order to make the tree including the point of
index p properly sorted, rearrange the tree from that
point toward root by iteratively comparing the point
and its direct ascendent point, until the sorting
condition is satisfied

end

end

We are now in a position to evaluate the efficiencies of the
algorithms just described through counting times of additions
and comparisons between two real numbers representing distances.
Since the total times of those additions and comparisons in step
A and B directly reflect to the total amount of computing time,
we shall only discuss on the times of those operations.

There are two kinds of operations. The one is an operation
(comparison/addition) for Vm+dmj<vj in step B, and the other is
a comparison in step A and B depending on each method. The
former is common to all methods discussed in this paper and it
requires m operations of additions and comparisons, where m is
the number of branches in the graph. These operations seem to
be essentially obligatory to the Dijkstra algorithm. The minimi-
zation of the other comparisons is the main goal of those studies
now investigated, hence hereafter we discuss particularly on
those comparisons. We shall use notations CA\gnd CB for the
times of comparisons in step A and step B except the obligatory
operations just above mentioned, respectively. Let Csum be

CA + CB.

We shall examine the behaviors of the upperbound of Coum
through "degree" (the number of branches incident to/from a
node). Let n and u be the number of nodes and the maximum degree
in the given graph, respectively. In the multitree method the

asymptotic upperbounds for C CB and CSum are calculated as

A’
follows, if n is sufficiently large and u >> 1 (i.e., 1 is
negligibly smaller than u).

C, = —T2/2 + nt + 2(n—T)log2(n/T)

(@]
1}

U(n—T)lng(n/T) .

118

since one downward (upward) rearrangement in step A (B) at most
requires 2 logQ(n/T) (logz(n/Tj).

The function for the upperbound of times of comparisons
reads:

S

Coum = —T2/2 +.nT + u(n—r)logz(n/r).
In order to see the behaviors of this function, we define

fv(x) = —x2/2 + % - v(l-x)loggx
with 0 <v <l and 0 < x <1, where v = u/n and x = 1/n.

Note that 6sum = nzfv(x). |

Some illustrations of the behaviors of fv(X) are shown in
Fig. 2. ’

CIf v i_loge2/2, then the minimum value fv(x) takes 1/2 at
X = l.‘ Hence if p > 0.34n, n should be chosen for t, in which
case the multitree method is identical to the direct methéd.

Let o' be v/logez. If 0 <o < 1/2, that is 0 < v < loge2/2,
the optimal value z yielding the minimum fv(xm)'is given as the
zero point of the function:

fv'(x) = -x + 1+ alogx + a(x-1)/x ,
where a < x < a(l+/1+4/a)/2.

The zero point X should be calculated by ‘some.numerical method
every time a new graph is given.

‘Note that the equation fv'(X) =-0 has exactly one solution
if x is in the domain (o,a(1+/1+4/a)/2).

If o approaches,tq 1/2, X approaches to 1. If o approaches
to 0 decreasingly, X approximately becomes to a. In other words
if the maximum degree u is sufficiently smaller than the number
of nodes n, e.g., if ¥ ﬁ_logzn . u/logGQ may be taken for the

optimal number of trees. In this case ésum is nearly un;og2n.

We shoﬁld.mention the précedure to decide p. The computational
labor for deciding p has a different meaning fpom the comparisons
between two real numbers, but it should be taken into consideration.
In the actual program it is possible to decide W within steps
proportional to the number of branches by a bit deliberate program-
mihg, which anyhow would not become considerabiy large. But as
mentioned during discussions on data structures each degree of
node may be easily obtained during such operations as an input

of a graph, then it is recommended to calculate each degree in

-8-

11

the graph representation itself.

It has already been pointed out that the multitree method
with n trees coinciaes with the direct method, hence the multitree
method may be considered as an-efficient generalization of the
direct method.

In the direct method if a complete graph is given,,CSum is
exactly n(n-1)/2. It can be shown: that in the linear list method
n3/6 comparisons are necessarily required, if the complete: graph
with trickily assigned values to branches is given. This shows
the theoretical defficiency of the linear list method, which has

been written in [9].

We shall investigate‘our methods from the viewpoint of actual
programming and experiments. The direct method is simple and
straightforward in programming. . The multitree method, as well as
the linear list method, is slightly complicated. .They have
equaily compafaﬁle sizes of ppdgrams. They.also equally require
the amount of memory spaces. As for the multitree method it is
necessary to use four words per node besides those for the-incidence
relatibn,»i.e., a~word for the distance from the source, for a
pointer referring to the incoming branch on the shortest path,
for a pointer referring‘to~array M and a word in M itself allocated
in the separate place. For a.branch a word for the assigned:

distance is necessary, besides those for the incidence relation.

A small computer FACOM 270-20 was used for the experiments.
All programs considered were written in Fortran. Three test graph
generators were prepared. They generate complete graphs, almost
regular (having almost equal degrees) graphs and two dimensional
lattice graphs. Values assigned to branches are generated by a
(pseudo) rahdom number generator. In Fig. 3, No. 256,'512 or
917 indicates the name of the random number generator, though
No. 917 generates a number sequence with a short period hardly
to say as random.

The experimental results show the strong dependence of times
of comparisons upon given graph structures. Other results not

displayed in Fig. 3 show very similar behaviors according as their

-9-

129

graph structures.

We shall explain some results shown in Fig. 3. All graphs
considered are nonoriented. Tor example see the second curve
from the topmost. The given graph has 100 nodes and it is almost
regular with degree 9. The incidence relation and values are
randomly decided by the generator No. 256. In this case the linear
list method requires 3099 comparisons, while the direct method
3837 comparisons. If we choose the optimal number of trees the
multitree method requires only 1014 comparisons. The obligatory
additions/comparisons amount to 447.

It is remarkable that those probably average behaviors of
times of comparisons show the quite faithful resemblance with
the theoretical upperbound function. However notice that the
optimal number of trees does not sufficiently coincide with the

theoretically obtained number for the upperbounds.

Finally we supplement two comments.

Slightly better balanced binary trees may be considered in
the same data structure used in the proposed multitree method,
but during index calculations of predecessors or of successors
it would be necessary to detect in which blocks the considered
index exists, hence it is not used here.

A multi-linear list method may also be devised as a
generalization of the linear list method, but the overheads of
list processings in time and space would become larger. And it
will be theoretically inefficient because of its excess of

sortings as is the same case in the simple linear list method.

ACKNOWLEDGMENTS
The author wishes to express his sincere gratitudes to

Professors M. Iri and A. Nozaki for their valuable discussions
and also to Mr. M. Sassa for his useful curve-plotting

subroutine on the lineprinter.

~10-

12,

REFERENCES

[1] Dijkstra, E. W., "A Note on Two Problems in Connexion with
Graphs," Numerische Mathematik, 1 (1959), pp.269-271.

[2] Dreyfus, S. E., "An Appraisal of Some Shortest-Path
Algorithms," Operations Research, Vol.7, No.3 (1968),
pp.395-412.

[3] Floyd, R. W., "Algorithm 245: TREESORT3," CACM, Vol.7,
No.12 (1964), p.701.

f4] Hopcroft, J. and R. Tarjan, "Efficient Algorithms for Graph
Manipulation," STAN-CS-71-207, Stanford University (1971),
19 pp.

[5] Iri, M., "Recent Developments in Theories and Techniques
for Network Problems (a survey)," Keiei Kagaku, Vol.l6,
No.2 (1972), pp.75-87, in Japanese.

[6]1 Iri, M., "On Technigues for Processing Informations with
Network Structures," Proceedings of Joint Conference of
Four Electrical Societies (1972), pp.850-853, in Japanese.

[7] Noshita, K., "On Data Structures for Representing Graphs,"
in Report of Network Wérking Group under the Operations
Research Society of Japan (1973).

[8] Tunekawa, J., "On Implementations of the Dijkstra Algorithm
for the Shortest-Path Problem," ibid.

[9] Wirth, N., "The Programming Language Pascal," Acta Informatica,
Vol.1l, No.l (1971), pp.35-63.

11~

Pt
&™)
o

F{.g. ! T balanced bi'now‘y soy’cincg trees

f o0

1.0

0.5

0'7,

0 o1 0.5 1.0

Fi%. 2 Behaviors of \Lyrerbownd]Cu o)

J

12

ol

ANV m?v.R

wS LOA§>\
09 04

Poyiap 22 TTH 2 syewnedsy o sqpmsay owog g by

G+ 98

(A

!

b

|
suosiode) GIF . poyisy

Sei~7

“agon/

| i

fmadga !

| . o

I L

.W bib oy .\:Q\x\«.w\ ®
9847

‘300 .N\%.c,_\m\x{\..rn\ @ :

~84og-

log =,

\i» t\
w&._L

qNA .o\z\\ ‘w.w.v\e}. ‘< AWy qk,wuxg

.

- 817 10301} RS
(=7 357 “ oy uu\..\...\\«w*.ln\.iu\ o

cn..:v\w
5§ e
958 o - Q\x\wq @

€187~
"2y -2
(94/=w) i xwi
98T o ¢ wu@tdd.@

i

P

S wWoSs <1y

