goooboooogn
0 236 0 19750 197-203

197

PROGRAM SCHEMAS WITH TREE DATA STRUCTURES

Nobuki TOKURA, Tadao KASAMI

Faculty of Engrg. Sci. Osaka University, Toyonaka

1. Introduction

Convéntional program échema [11[4]1[6]1[20]} may be thought of as a model for
those programs which perform very deep computations on a small number of data.
On the other hand, there are another type of programs, such as control programs,
which process a large number of data of some data structure and perform simple
computations on each data item. We have analyzed a small disk operating system
(DOS) monitor program [2][3]. The whole data structure in the DOS monitor is
rather complicated. But, each routine (or module) can be said to process a
rather simple substructure such as a linear list. In this paper, some program
schemas with data structures are introduced as models for programs of the latter
type, and it is shown that the equivalence préblems of these program'schemas
are decidable. Constable, Gries and Chandre [6][10] investigate program schemas
with data structures such as arrays and pushdown lists. In their model, data
structures are used as a kind of working strages. Their program schemas are
so powerful that most decision problems are undecidable. Their works mainly
deal with the problems of translation from one class of schemas to another
class. On the other hand, our program schemas have tree data structures as
both inputs and outputs. - And by some restriction, their powers remain in the
region such that their equivalence problems are decidable.
2. Definitions

The program schema which we consider is defined as follows by using BNF

198

notation:
<program> :: = (a {,a}) : <body>
<body> 12 = <S-1list> ; [2¢] HALT (z)

<S-list> ::o= [2:] <8 {; [2:] <5}

<§> 1 = P« Peup (&) - (1)
| | P « Pedown i (2) (2)
A LILITR (3)

| a(® 2,8, (4)

| Output £ (P, &),¢, &) ‘ (5)

| R+ £ (P, a),*, ap,) (6)

I R+ £ (R, Py &y,eee,2p,) (1)

| HALT (z) , - (8)

| GO .TO 2 (9)

In this defiﬁition, % denotes a label from the set L = {L., L2,---},

& denotes an input register from the set A = {Al, A2,~--}, f denotes a basic
function symbol from the set F = {F,, F2,---} and q denotes a predicate
symbol from the set Q = {Ql, Q2,°"}. z denotes a natural number., Each
predicate symbol Qi has rank RQi + 1 for the statement of type (3) and rank
1 for the statement of type (4). Each function symbol F, has rénk RF; +1
for the statement of type (5) and (6) gpd rank RFi + 2 for the statement of
type (7). The output statement of type (5) writes.the value f(P, a ,---,.aRf)
into the field of the vertex pointed to by P. R is the output register. For
simplicity, we consider only one output register.

The list of input registers before the <body> indicates the input registers
which are used in the schema. As usual, any label. & used in a GOTO statement
or conditional statement of types (3) and (4) must also label a statement. Each
label £ can be used only once to label a statement. ' Each program schema.has

only one pointer, represented as P, which scans a tree data structure. A rooted

189

tree (or simply tree) is a directed graph satisfying

the following three conditions:

(1) There is exactly one vertex, called the root,

which no edge enters. (2) For each vertex in the
tree there exists a sequence of directed edges from

the root to the vertex. (3) Exactly one edge enters

each vertex except the root. A vertex from which

no edge exits is called a leaf. Consider a subtree

Fig. 1.

_ of Fig.l. When pointer P points to the vertex V,
P moves to the vertex V' by the operation P <« Peup(2) (1), and P moves to
the vertex V, by the operation P + P-down i (2) (2). Value of P.up is
NIL when P points to the root and value of Pedown i is NIL when P points
to a leaf. And if P points to the vertex V in Fig.l and if there is no
edge di’ then P-down i takes the value NIL. If the right hand is NIL in the
operations (1) or (2), then the control will jump to the statement labelled
with £ and the pointer P is left unmoved.

Let D, the class of tree data structures (or simply, data structure) be
defined as follows: It is assumed without loss of generality thgt each vertex
hés only one data field. And the size of each data field is considered not
to be bounded. This covers the cases of an arbitrary number in the binary
notation and symbol strings with arbitrary length. The numbers of user names
and file names in the example below may be considered to be potentially infinite.
In this way, we discriminate between those entities whose sizes are proper to
the program ;ﬁd others which are treated as not necessarily bounded. Although
in real programming languages, there might be some bounds for the entities of
the latter type, algorifhms which depends on the boundedness of this kind might
be too inefficient to carry out. In this paper, only data fields are modified

and the data structure remains unchanged. (Note. in Remark 2, a schema which

—3_

.

200

Changés*the structure to a certain'degree is mentioned.)
Example 1: Let us consider a data structure called a file directory in
Fig.2 and the following program schema S:

(Al’ Az) H LO H Ql (PQ %-) L2’ Ll
L. : P <+ Pedown 1 (L5) 3

" FILE NAME 1
vV | GO T0 L ;
2/ 2 2 L% L . ,
3' 3 ¥ L, : ? + Pedown 2 (Lh) 3
|2 _ _ \GTATUS INFORMATION Ly : P« Pedowm 3 (Lg) 3
; R« TF (P);
' : HALT (3) ;
]

Lh : HALT (2) ;

G : 1) 3
™~ USER NAME Lg ¢ HALT (1) ;

L6 : HALT (0)

NIL Fig.2. File Directory vhere and Ql are unlmter-
' o preted. If an interpretation

ql(x, Y) i X=Y

Fl(X) : Fl(X) = X (identity function)
is given, then the program schema becomes a program such that the status infor-
mation of. the file given by A2 of the user given by A1 in a file directory is
returned to the register R. Then, the halting condition may be described as
follows :

HALT (0) : the status information is not found.

HALT (1) : the user is not registered.

HALT (2) : the file is not found.

HALT (3) : the status information is in R.

The HALT statement of type (8) gives a decision as above. This class of program

schems. can model many of the modules of monitor programs and others.

-1 -

3. Program schemas with tree data structures

1° The execution of the program starts with its pointer pointing at the root.
It is assumed without loss of generality that HALT statements will be executed
only after P « Prup is executed with the value of P-up being NIL, that is,
HALT statement is executed when the pointer moves off the root upwards.

2° Two program schemas Sl and S, are said to be equivalent if under any

2
interpretation, for any input data structure of D , either both of them do not
halt or both of them halt by executing HALT(i) for some i in such a way
that the contents of all the corresponding fields of the resulting data structures
are identical and the contents of the output registers are identical.
3° Class 1 of program schemas ----—-PSl
Let program schemas of PSl be those which satisfy the following condition:
al) Each vertex is scanned not more than K times for a fixed K and
output statements of type (5) are not executed at each vertex more than L
iimes for a fixed L under any interpretation. |
Theorem ;: It is decidabie whefhér two program schemas of cl;ss PSl with
no use of the statement of type (6) are (strongly) equivalent.

Theorem 2: It is decidable whether two program schemas of class PS, with

1

no use of the statement of type (4) are equivalent.

Remark 1: If the assumption al is removed, then we have negative results.

More strongly, it can be shown that it is recursively undecidable whether two

Turing acceptors are equivalent which are permitted to scan the (one-dimensional)

tape indefinitely but are permittéd to rewrite each square only once.[ll]

‘h° Class 2 of program schemas ———-PSZ
Let program schemas of P82 be those which satisfy the following condition:

52) It is assumed that each vertex has two disjoint data fields. One of

them is the output field of the output statement of type (5) and the other is

a field which are referenced to by the statements of type (3), (5) and (6).

-S_.

o
<z
o

This condition is introduced in consideration of Remark l.‘ The schema of P82
may loop on & tree structure under some interpretation and it does not necessa-
rily satisfy the assumption al). |
Theorem 3: It is decidable whether two program schemas of class PS2 with
no use of the statement of type (6) are equivalent, under the assumption that
the ou;put statements are executed at most once for each vertex.
Theorem 4: = It is decidable whether two program schemas of class PS, with
no use of the statement of type (4) are equivalent.

There are two reasons for us to consider the class PS,. First, several

2

typical modules of monitor programs satisfy the conditions for PS Second,

o
while there are no known algorithm to decide whether a schema satisfies the
assumption al), it is decidable whether a schema satisfies the assumption a2).
Remark 2: By the same proof technique, the results can be extended to the

class of program schemas which modify the tree structure to a certain degree.

The following modifications are permissible.

1) To permute the outgoing edges of each vertex.
2) To delete a vertex or to delete a subtree.
3) To insert a bounded number of vertices into each edge.

The above results are proved by reducing the problem to the one of tree auto-
maton.. Two-way tree automaton (2ta), tree walking automaton (twa), tree-tape
Turing machine (tTM) and others are investigated. The results are omitted

here. A full paper is in preparstion.

203

References
[1] I.I.Ianov, "The logical schemes of algorithms," Prob. of Cyb. 1 (1958),
T75-127.
[2] J.0kui, N.Tokura and T.Kasami, "Analysis of a control program — & linear
list frocessing machine," Papers of Technical Gfbup on Automata and |

language, I.E.C.E., Japan (April, 1972).

[3] The second symp. on MTC,

, "Analysis of a disk operating system,
Research Inst. for Math. Sci. Kyoto Univ. 1972.

[4] M.S.Paterson, "Equivalence problems in a model of computation,” Artificial
Intelligence Tech. Memo, 1, M.I.T. 1970.

[5] N.Tokura and T.Kasami, "Program schemas with tree data structures,"
Symp. on Math. theory of inform. sci., Research Inst. for Math. Sci.
Kyoto Univ. Feb. 1973.

[6] R.L.Constable and D.Gries, "On Classes of Program Schemata," SIAM J. Comput.
1 (1972), 66-118.

[7] Y.Katsuyama, K.Taniguchi, N.Tokura and T.Kasami, "Simplification of Program
Schemata," Papers of Technical Group on Automata and language, I.E.C.E.,
Japan (Jan. 1973).

[8] J.0kui, T.Hosomi, N.Tokura and T.Kasami, "A formal definition of file
mansgement programs," Op. Cit. (Jan. 1973).

[9] T.Hosomi, N.Tokura and T.Kasami, "Some prograﬁ schemata for file processing,"
Op. Cit. (June 1972).

[10] A.Chandra,-"On the properties .and application of program schemas,"
Stanford Artificial Intelligence Lab. MEMO ATM-188, Comp. Sci. Dept. Stanford

Univ. 1973.

[11] M.Minsky, Computation : Finite and infinite machines, Prentice Hall 1967T.

