On the pluricanonical systems of algebraic manifolds.

Kenji Ueno
Department of Mathematics
Faculty of Science
University of Tokyo

Any algebraic manifold is assumed to be connected, complete, non-singular and defined over the complex number field \mathbb{C} . Let $K_{\underline{M}}$ be the canonical line bundle of an algebraic manifold M. If $P_{\underline{m}}(M) = \dim_{\mathbb{C}} H^0(M, \underline{O}(mK_{\underline{M}}))$ is positive for a positive integer m, we can define a rational mapping

where $\{\varphi_0, \, \varphi_1, \dots, \, \varphi_N\}$ is a basis of the vector space $H^0(M, \, \underline{O}(mK_M))$. The rational mapping $\underline{\Phi}_{mK}$ is called the m-th canonical mapping. We set $N(M) = \{m > 0 \mid P_m(M) > 0\}$. The Kodaira dimension $\kappa(M)$ of the algebraic manifold M is defined by

$$\kappa(M) = \begin{cases} \max_{m \in \mathbb{N}(M)} \dim_{mK}(M) & \text{if } N(M) \neq \emptyset, \\ \max_{m \in \mathbb{N}(M)} \dim_{mK}(M) & \text{if } N(M) = \emptyset. \end{cases}$$

It is easy to show that, if two algebraic manifolds ${
m M}_1$ and ${
m M}_2$

are birationally equivalent, then $P_m(M_1) = P_m(M_2)$. Hence for an irreducible complete singular algebraic variety V, we define the Kodaira dimension $\kappa(V)$ of V by

$$\kappa(V) = \kappa(V^*)$$

where V is a non-singular model of the variety V. For the properties of Kodaira dimensions we refer the reader to Iitaka [2] and Ueno [6], [7].

Let S be an algebraic surface, that is, an algebraic manifold of dimension two. A complete curve C in S is called an exceptional curve of the first kind if C is a non-singular rational curve with $C^2 = -1$. If S contains an exceptional curve C of the first kind, there exist a non-singular surface \hat{S} and a birational morphism $\varphi: S \longrightarrow \hat{S}$ such that $\varphi(C)$ is a point \hat{p} and that φ induces an isomorphism between S - C and \hat{S} - \hat{p} . The following theorem is a corollary to the classification theory of algebraic surfaces.

Theorem. Let S be an algebraic surface free from exceptional curves of the first kind. Suppose that $\kappa(S) \geq 0$. Then there exist a positive integers d and m_0 such that the complete linear system $|mdK_S|$ is free from base points and fixed components if $m \geq m_0$.

If $\kappa(S) = 2$, then we can show that d = 1 and $m_0 = 4$. The proof can be found in Kodaira [4] and Bombieri [1]. If $\kappa(S) = 0$, then the number d can be taken as a divisor of 12 and $m_0 = 1$. The proof can be found in Safarevič et al [5] Chap. VIII. If $\kappa(S) = 1$, then the number d can be taken as a divisor of 86. This fact can be deduced from the canonical bundle formula for elliptic surfaces due to Kodaira [3].

It had not been known whether the above theorem holds for algebraic manifolds of dimension $n \ge 3$. The main purpose of the present paper is to show that the above theorem does <u>not</u> necessarily hold for an algebraic manifold of dimension $n \ge 3$. Namely, we shall prove the following:

Main Theorem. For a pair of positive integers l, n with $0 \le l \le n$, $3 \le n$, there exists an algebraic manifold M of dimension n which satisfies the following conditions:

- ② For any birationally equivalent non-singular manifold M^* of M, if $|mK_{M^*}| \neq \emptyset$, then $|mK_{M^*}|$ has fixed components.

To prove the theorem we shall construct algebraic manifolds which satisfy the above conditions \mathbb{Q} , \mathbb{Q} using the canonical resolutions of cyclic quotient singularities. For simplicity, in this paper, we shall only consider the quotient singularity by a cyclic group of order 2. It is not difficult to generalize our construction to the case of arbitrary quotient singularities.

 \S^1 . Let M be an algebraic manifold and let $\underline{S}^k(\varOmega_M^\ell)$ be the k-th symmetric tensor product of the sheaf \varOmega_M^ℓ of germs

of holomorphic *L*-forms on M. The following lemma is well-known. A proof is found in Ueno [6].

Lemma 1.1 Let M and M* be algebraic manifolds.

Suppose that there exists a surjective rational mapping $f: M \longrightarrow M^*$. Then for any positive integer k, f induces an injective linear mapping

$$f^*: H^0(M^*, \underline{S}^k(\Omega_{\underline{M}^*}^{\ell})) \longrightarrow H^0(M, \underline{S}^k(\Omega_{\underline{M}}^{\ell})).$$

Moreover if f is birational, f is an isomorphism.

Now we shall consider resolutions of quotient singularities. Let U be an open set in ${\bf C}^{\rm n}$ defined by inequalities :

$$|z_i| < (8)^{1/2}, i = 1, 2, ..., n.$$

We let G be a group of order 2 of analytic automorphisms of U generated by the automorphism

$$g: (z_1, z_2, ..., z_n) \longmapsto (-z_1, -z_2, ..., -z_n).$$

The quotient space $\hat{\mathbb{U}}=\mathbb{U}/\mathbb{G}$ has a singular point p which corresponds to the origin of \mathbb{C}^n . A resolution of the singularity of $\hat{\mathbb{U}}$ can be given as follows. Let \mathbb{W}_i , $i=1,\,2,\,\ldots$, n be open set of \mathbb{C}^n defined by the inequalities :

$$|(w_i^k)^2 w_i^i| < \epsilon, k \neq i, |w_i^i| < \epsilon.$$

We shall construct a complex manifold $W=\bigcup_{i=1}^nW_i$ by identifying W_{i-1} and W_i through the following relations :

$$\begin{cases} w_{i}^{k} = w_{i-1}^{k}/w_{i-1}^{i}, & k \neq i-1, i, \\ w_{i}^{i-1} = 1/w_{i-1}^{i} \end{cases}$$

$$\begin{cases} w_{i}^{i} = (w_{i-1}^{i})^{2} w_{i-1}^{i-1}. \end{cases}$$

Let us consider a meromorphic mapping

The meromrophic mappings T_i , $i=1,\ldots,n$ induce a meromorphic mapping $T:\hat{\mathbb{U}}\longrightarrow \mathbb{W}$. Let E be a submanifold of W defined by the equations :

$$w_{i}^{i} = 0$$
 in W_{i} , $i = 1, 2, ..., n$.

E is analytically isomorphic to an (n-1)-dimensional complex projective space \mathbb{P}^{n-1} . The meromorphic mapping T incudes an isomorphism between $\hat{\mathbb{U}}$ - p and W - E. Hence we infer that W is a non-singular model of the quotient space $\hat{\mathbb{U}} = \mathbb{U}/\mathbb{G}$. The procedure of resolving the singularity is called the <u>canonical resolution</u>.

Let us consider the G-invariant subspace $H^0(U, \underline{S}^k(\mathfrak{J}_U^{\ell}))^G$ of $H^0(U, \underline{S}^k(\mathfrak{J}_U^{\ell}))$. Any element \mathscr{G} of $H^0(U, \underline{S}^k(\mathfrak{J}_U^{\ell}))^G$ gives an element \mathfrak{F}' of $H^0(\widehat{U}_{-p}, \underline{S}^k(\mathfrak{J}_{\widehat{U}_{-p}}^{\ell}))^G$.

By 1.2 we can easily show that $\hat{\varphi}'$ can be uniquely extended to a meromorphic section $\hat{\varphi}$ of the locally free sheaf $\underline{S}^k(\mathcal{L}_W^{\ell})$. By explicit calculations we can prove the following:

- Moreover, if $n \ge 3$, any element φ of $H^0(U, \underline{O}(mK_U))^G$ has a zero of order at least $[\frac{m}{2}]$ on E where [] is the Gauss symbol.
- ② The form $(dz_1)^2 \in H^0(U, \underline{S}^2(\Omega_U^1))^G$ induces a meromorphic section ψ of the sheaf $\underline{S}^2(\Omega_W^1)$ which has a pole of order 1 on E.

Remark 1.4. If n=2, $(dz_1 \wedge dz_2)^m$ is an element of $H^0(U, \underline{O}(mK_U))^G$ and induces a nowhere vanishing element of $H^0(W, \underline{O}(mK_W))^G$. This is one of the main differences between dimention two and dimension $n \ge 3$.

- § 2. Main Theorem is a corollary of the following theorem.

 Theorem 2.1. Let V be an algebraic manifold of dimension $n \ge 3$. Suppose that V has an analytic involution g. Suppose, moreover,
- ① the involution g has at least one fixed point and any fixed manifold of g is an isolated point;
- 2 there exists a holomorphic 1-form ω on V such that ω does not vanish at a fixed point p_1 of the involution g and that $g^*\omega = -\omega$.

Let M be any non-singular model of the quotient variety V/G where G is a cyclic group generated by g. Then, if $|mK_M| \neq \emptyset$, $|mK_M| | has a fixed component$.

Proof. Let p_1, p_2, \ldots, p_k be fixed points of the involution g. The quotient space V/G has singular points P_1, P_2, \ldots, p_k which correspond to the fixed points. Each singular point has a neighbourhood which is analytically isomorphic to $\hat{\mathbb{U}}$ in §1. Let M be a non-singular model of V/G obtained by the canonical resolution of its singularities. First we shall show that if $|\mathbf{m}\mathbf{K}_{\mathbf{M}}| \neq \emptyset$, then $|\mathbf{m}\mathbf{K}_{\mathbf{M}}|$ has fixed components. Let $\mathbf{E}_1, \ldots, \mathbf{E}_k$ be subvarieties of M appearing in the canonical resolution. From Lemma 1.2, $\mathbf{\Phi}$ we infer that there is an isomorphism

$$H^0(V, \underline{O}(mK_V))^G \longrightarrow H^0(M, \underline{O}(mK_M))$$

and any element of $H^0(M, \underline{O}(mK_M))$ has zero of order at least $[\frac{m}{2}]$ on E_i . Hence the divisor $[\frac{m}{2}](E_1 + \cdots + E_k)$ is a fixed component of $[mK_M]$.

Next let us consider a birationally equivalent non-singular model M^{\star} of M. Let $g: \text{M} \longrightarrow \text{M}^{\star}$ be a birational morphism. By elimination of the points of indeterminacy of a rational mapping due to Hironaka, there exist an algebraic manifold $\hat{\text{M}}$ and a

morphism $\pi_1: \hat{\mathbb{M}} \longrightarrow \mathbb{M}$ obtained by a finite succession of monoidal transformations with $\mathbb{M} \xrightarrow{g} \mathbb{M}^*$ non-singular centers such that $\pi_2 = g \cdot \pi_1: \hat{\mathbb{M}} \longrightarrow \mathbb{M}^*$ is a morphism. Let \mathcal{E} be the exceptional divisors appearing in the monoidal transformations. Then for any element $\varphi \longrightarrow \mathbb{H}^0(\mathbb{M}, \ \underline{\mathbb{O}}(\mathbb{M} \mathbb{K}_{\underline{\mathbb{M}}})), \ \pi_1^*(\varphi)$ has zeros on \mathcal{E} . Hence if $\mathbb{I} \mathbb{M} \mathbb{K}_{\underline{\mathbb{M}}}$

 $\neq \emptyset$, $| mK_{\hat{M}} |$ has a fixed component. We let \hat{E}_i , $i=1,\ldots,k$ be the strict transform of E_i to \hat{M} .

First we show that there exist at least one $\hat{\mathbb{E}}_i$ or an irreducible component \mathcal{E}_1 of \mathcal{E} such that $\pi_2(\hat{\mathbb{E}}_i)$ or $\pi_2(\mathcal{E}_1)$ is a divisor on M^* . Assume the contrary. Then $\pi_2(\mathbb{E}_i)$ and $\pi_2(\mathcal{E})$ are of codimension at least two in M^* . Let us consider the holomorphic 1-form ω on M. Since M is algebraic, ω is a closed form. Hence we can choose a coordinate neighbourhood U of the fixed point p_1 in M with local coordinates z_1, z_2, \ldots, z_n with center p_1 such that ω has a form dz_1 and that the involution is expressed in the form

 $(z_1, z_2, \ldots, z_n) \longrightarrow (-z_1, -z_2, \ldots, -z_n).$

The form $(\omega)^2 \in \mathrm{H}^0(V, \underline{S}^2(\mathfrak{A}_V^1))^G$ induces a meromorphic section ψ of $\underline{S}^2(\mathfrak{A}_M^1)$ which is holomorphic on $\mathrm{M} - \bigcup_{i=1}^k \mathrm{E}_i$. Therefore the pull-back $\pi_1^*(\psi)$ is holomorphic on $\widehat{\mathrm{M}} - \bigcup_{i=1}^k \mathrm{H}^{-1}(\mathrm{E}_i)$. On the other hand if S is the smallest analytic subset of $\widehat{\mathrm{M}}$ such that π_2 is an isomorphism on $\widehat{\mathrm{M}}$ - S, then $\pi_2(S)$ is of codimension at least two by Zariski's Main Theorem. Hence $\pi_1^*(\psi)$ induces a holomorphic form on $\widehat{\mathrm{M}}^* - \{\pi_2(\bigcup_{i=1}^k \pi_i^{-1}(\mathrm{E}_i) \cup S)\}$. By our assumption $\pi_2(\pi_1^{-1}(\mathrm{E}_i))$ is of codimension at least two. Since $\pi_2^*(g^*(\psi)) = \pi^*(\psi)$, $g^*(\psi)$ is holomorphic on $\widehat{\mathrm{M}}^*$. Then by Lemma 1.1, ψ must be holomorphic on $\widehat{\mathrm{M}}$. But by Lemma 1.3, $\widehat{\mathrm{M}}$, ψ has a pole on E_1 . This is a contradiction. Hence

 $\pi_2(E_1)$ or $\pi_2(E_1)$ is a divisor. For simplicity we assume that $\pi_2(E)$ is a divisor. By Zariski's Main Theorem, there exists a nowhere dense algebraic subset S such that $S \neq E_1$ and that at any point of $S-E_1$, π_2 is an isomorphism. Hence for any element $\varphi \in H^0(M, \ \underline{O}(mK_M))$ $g^*(\varphi)$ has a zero on $\pi_2(E_1)$. Since $\pi_2^*(g^*(\varphi)) = \pi_1^*(\varphi)$. By Lemma 1.1, if $|mK_M*| \neq \emptyset$, then $|mK_M*|$ has a fixed component $\pi_2(E_1)$. Q.E.D.

Remark 2.2. • The above theorem holds for a compact complex manifold V if we assume, furthermore, that a holomorphic 1-form ω in the above condition ② is d-closed.

- In the above theorem, if we assume that any fixed manifold of the involution g is of codimension at least three and that there exists a holomorphic 1-form ω on V such that ω has no zeros on a fixed manifold F, and that $\omega(F=0)$ and $g(\omega)=-\omega$, then the same conclusion holds.
- § 3. Now we prove Main Theorem. For simplicity we shall prove the theorem when n = 3.
- (3.1) Let C be a non-singular complete curve of genus g. Suppose that C has an involution \imath which has at least one fixed point. We set $\hat{C} = C/\langle \imath \rangle$. Assume that the genus of \hat{C} is strictly greater than one. Let S be a surface in \mathbb{P}^3 defined by the homogeneous equation

$$z_0^{10} + z_1^{10} + z_2^{10} + z_3^{10} = 0$$
.

S has an involution h defined by

$$h : (z_0:z_1:z_2:z_3) \longrightarrow (z_0:-z_1:-z_2:z_3).$$

The involution h has twenty fixed points on S. Let \widetilde{S} be a non-singular model of the quotient variety S/<h>. Since there exists a surjective rational mapping of \widetilde{S} onto the surface F in \mathbb{P}^3 defined by the homogeneous equation

$$z_0^5 + z_1^5 + z_2^5 + z_3^5 = 0$$
,

we have $2 \ge \kappa(\widetilde{S}) \ge \kappa(F) = 2$.

Let g be an involution of $V = C \times S$ defined by

$$g: C \times S \longrightarrow C \times S$$

$$(z, w) \longmapsto (i(z), h(w)).$$

Since the canonical series $|K_C|$ of the curve C has no base points, there exists a holomorphic 1-form ω on C which does not vanish at a fixed point p of C. We can consider ω as a holomorphic 1-form on V. Then the conditions (1) and (2) in Theorem 2.1 are satisfied. We let M be the non-singular model of the quotient variety $V/\langle g \rangle$. By Theorem 2.1 M satisfies the condition 2) in Main Theorem. Since there exists a surjective rational mapping of M onto $\hat{C} \times \hat{S}$, we have

$$3 \ge \kappa(M) = \kappa(\hat{C} \times \tilde{S}) = \kappa(\hat{C}) + \kappa(S) = 3.$$

(3.2) Let E be an elliptic curve. We set $V = E \times S$ where S is the same as above. V has an involution

$$g : E \times S \longrightarrow E \times S$$

$$(z, w) \longmapsto (-z, h(w))$$

where h is the same involution as above. It is easy to show that V, g and a holomorphic 1-form ω on E satisfy the conditions in Theorem 2.1. Let M be a non-singular model of $V/\langle g \rangle$ obtained by the canonical resolution of its singularity. Then M satisfies the condition 2) in Main Theorem. There exists a surjective rational mapping $f: M \longrightarrow \widetilde{S}$ whose general fibre is the elliptic curve C. Hence $f: M \longrightarrow \widetilde{S}$ is birationally equivalent to an elliptic threefold. From the canonical bundle formula for elliptic threefolds (see Ueno [6], Theorem 6.1), we infer that K(M) = 2.

(3.3) Let C, ι and ω be the same as those in 3.1. We let T be an abelian surface. We set $V = C \times T$. V has an involution g defined by

$$g : C \times T \longrightarrow C \times T$$

$$(z, w) \longmapsto (l(z), -w).$$

It is easy to show that V and g satisfy the conditions in Theorem 2.1. Let M be a non-singular model of the quotient variety $V/\langle g \rangle$ obtained by the canonical resolution of its singularities. There exists a surjective rational mapping $f: M \longrightarrow \hat{C}$ whose general fibre is the abelian surface S. It is easy to calculate the canonical bundle formula of such a fibre space (see Ueno [8]) and we obtain

$$\kappa(M) = 1$$
.

(3.4) Let V be an abelian variety of dimension 3. V has a

natural involution

$$g : V \longrightarrow V$$

$$z \longmapsto -z.$$

A non-singular model M of the quotient manifold $V/\langle g \rangle$ obtained by the canonical resolution of its singularities is usually called a Kummer manifold. $\kappa(M) = 0$ and M satisfies the conditions of Main Theorem. Such a manifold has been studied in Ueno [7], §16.

Remark 3.5. Let M be an algebraic threefold defined in 3.1. It is easy to show that $|mK_{\stackrel{}{M}}| \neq \emptyset$ for any positive integer m. The m-th canonical mapping

$$\Phi_{mK}: M \longrightarrow \mathbb{P}^N$$

associated with the complete linear system |mK| is a morphism. If m is sufficiently large, the image $\Phi_{mK}(M)$ is analytically isomorphic to the quotient variety $V/\langle g \rangle$. Hence the image variety $\Phi_{mK}(M)$ is normal.

References

- [1] E. Bombieri. Canonical models of surfaces of general type. Publ. Math. IHES, 42 (1973), 171-219.
- [2] S. Iitaka. On D-dimensions of algebraic varieties. J. Math. Soc. Japan, 23 (1971), 356-373.
- [3] K. Kodaira. On the structure of compact analytic surfaces, I. Amer. J. Math., <u>86</u> (1964), 751-798.

- [4] ——. Pluricanonical systems of algebraic surfaces of general type. J. Math. Soc. Japan, <u>20</u> (1968), 170-192.
- [5] I. R. Šafarević et al. Algebraic Surfaces. Proc. Steklov Inst. Moscwa, 1965. English translation, Amer. Math. Soc. 1967.
- [6] K. Ueno. Classification of algebraic varieties, I. Compositio Math., <u>27</u> (1973), 277-342.
- [7] Classification theory of algebraic varieties and compact complex spaces. To appear in Lecture Noetes in Math., Springer.
- [8] On fibre spaces of normally polarized abelian varieties of dimension 2, III. To appear.