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Any algebraic manifold is assumed to be connected, complete,
non-singular and defined over’the‘complex number field €, Let
KM be the canonical line-bundle of an‘algebréic manifold M,

0 . . . .
If Pm(M) = dimCH M, g(mKM))' is positive for a positive inte-

géer m, we can define a rational mapping

QHML: M > ®
w v

z —— (?o(z):?l(z):---:?ﬁ(z)),
where {%b, Prseees ?N} is a basis of the vector space

HO(M, Q(mKM)), The rational mapping is called the m-th

D
canonical mapping, We set N(M) = {m>0 | P (M) > 0}. The Kodaira
dimension (M) of the algebraic manifold M 1is defined by

max dim @ (M) if NQ) # @,
kM) = meNen) " |

0 if N(M) =0 .

It is easy to show that, if two algebraic manifolds M; and M2
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are birationally equivalent, then Pm(Mi) = Pm(MZ)‘ Hence for
an irreducible complete singular algebraic variety V, we define
the Kodaira dimension K(V) of V by

W) = k()
where V* is a non-singular model of the variety V, For the
properties of Kodaira dimensions we refer the reader to Iitaka
[2] and Ueno [6]1, [7].

Let S be an algebraic surface, that is, an algebraic
manifold of dimension two, A‘cbmplete curve C in S 1is called
an exéeptional curve of the first kind if C is a non-singular
rational curve with C2 =-1, If S contains an exceptional
curve C of the first kind,there exist a non-singular surface
§ and a birational morphism ¢ : S —> § such that <(C) is a
point 6 and that ¢ induces an isomorphism between S - C and
8 - ﬁ, The following theorem is a  corollary to the classifica-
tion theory of algebraic surféces,

Theorem, _Let S _be an algebraic surface free from excep-

tional curves of the first kind, Suppose that k(S) 2 0,

Then there exist a positive integers d _and m such that the

complete linear system {deSI is free from base points and fixed

components if m 2 m .
If «S) = 2, then we can show that d = 1 -and m, =4,
The proof can be found in Kodaira [4] and Bombieri [1], If «(S)

= 0, then the number d can be taken as a divisor of 12 and
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my = 1, The proof can be found in §afarevié et al [5] Chap, VIII,
If «(S) = 1, then the number d can be taken as a divisor of
86, This fact can be deduced from the canonical bundle formula
for elliptic surfﬁces due to Kodaira [3],

It had not been known whether the above theorem holds for

algebraic manifolds of dimension n 2 3 The main purpose of

the present paper is to show that the above theorem does not
necessarily hold for an algebraic manifold of dimension n 2 3,

Namely, we shall prove the following :

Main Theorem, For a pair of positive integers £, n

with 0 < £<n, 3 £n, there exists an algebraic manifold M

of dimension n which satisfies the following conditiogs:
© =4,

: %*
@ For any birationally equivalent non-singular manifold M

of M, if (mKM*[_% @, then |mKM*‘ has fixed componeﬁts,

To prove the theorem we shall construct algebraic manifolds
which satisfy the above conditions Q), @) using the canonical
résolutions of cyclic quotient singﬁlarities_ For simplicity,
in this paper, we shall only consider the quotient singularity
by a cyclic group of order 2, It is not dificult to generalize

our construction to the case of arbitrary quotient singularities,

§1, Let M be an algebraic manifold and let §F(JZ§) be

the k-th symmetric tensor product of the sheaf jt& of germs
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of holomorphic {-forms on M, The following lemma is well-known,

A proof is found in Ueno [6],

%*
Lemma 1,1 Let M and M ©be algebraic manifolds,

Suppose that there exists a surjective rational mapping f : M

, £ induces an

*
— M | Then for any positive integer k

injective linear mapping

£ wol, sfafor— o, sfad.

: *
Moreover if f _is birational, f is an isomorphism,

Now we shall consider resolutions of quotient singularities,

Let U be an 6pen set in €" defined by inequalities

/2 4.1, 2

Izi! < (8)1 n

3 -] LIRS °

We let G be a group df order 2 of analytic automorphisms of
U generated by the automorphism

g8 : (29, 2g9,..., 2 ) (-2, -2,5,...,72).
The quotient sPace'vﬁ = U/G has a singular point vp which
corresponds té the origin of Cn, A resolution of the singular-

ity of 0 can be given as follows, Let Wi, i=1, 2, n

oo S
be open set of ¢ defined by the imequalities :
ky2 i i
l(wi) wil’< e, k#1i, Iwil {e,

: n
We shall construct a complex manifold W = ‘*)Wi by identifying
i=1

Wi-l and Wi through the following relations :
k .k i . .
W, = wi-llwi-l , k# i-1, i,
wicl i
wi = 1/Wi-l
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\\wi - b 2l
i = Wi Vi

Let us consider a meromorphic mapping

(1.2) T, : U — W,
i ol
v z z, z z
1 i-1 2 i+l n
(zl’ZZ""’zn)‘ 7 (Z.”"’ z. ° (Zi) s o, "."E_.)'
i i i i

The meromrophic mappings Ti i=1 n induce a meromorphic

b 3 e 0 )

mapping- T : 0 —> W, Let E be a submanifold of W defined
by the equations :

w, =0 in W i=1,2,,,,,n ,
E 1is analytically isomorphic to an (n-1)-dimensional complex
projective space Pn-l, The‘meromorphic mapping T 1incudes an
isomorphism between Lij ; p and W - E, Hence we infer that
W 1is a non-singular model of the quotient space t = u/G,

The procedure of resolving the singularity is called the canon-

ical resolution,

Let us consider the G-invariant subspace HO(U, §F(Jl%))G
of HO(U, §F(_Q%)), Anyvelement ¢ of HO(U, §F(JZ§))G gives
: Vot BO0op, SK(aE 1S
anvelement $ of H (0 P, S (JZU_p)) .
By 1,2 we can easily show that Q' can be uniquely extended to
a meromorphic section ? of the locally free sheaf §F(JZ%);

By explicit calculations we can prove the following:

Lemma 1,3, @ If n > 2, there is a canonical isomorphism

(v, 0@r )’ == W, o@iK,))

%> e

w
P — >
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-
e

Moreover, if n Z 3, any element < of HO(U, Q(mKU))G has a

zero of order at least [gﬂ on E where [ ] is the Gauss

symbol,
2 The form (dzl)ze HO(U, §?(51$))G induces a meromorphic

section ¥ of the sheaf _§2(Jl§) which has a pole of order 1

on E

Remark 1,4, If n= 2, (dzlA\dz )m is an element of

2
HO(U, Q(mKU))G and induces a nowhere vanishing element of

HO(W, QﬂmKW))G, This is one of the main differences between
dimention two and dimension n 2 3

§ 2, Main Theorem is a corollary of the following theorem,

Theorem 2,1, Let V Dbe an algebraic manifold of dimgn-

sion n 2 3, Suppose that V has an analytic involution g,

Suppose, moreover,

@® the involution g has at least one fixed point and any fixed

manifold of g is an isolated point ;

@ there exists a holomorphic l-form «# on V such that w

does not vanish at a fixed point Py of the involution g _and

*
that gw=-w

Let M be any non-singular model of the quotient wvariety

V/G where G is a cyclic group generated by g, Then, if

|mKM\ # @, |mKM\ has a fixed component,
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Proof, Let PysPys..esPy be fixed points of the involu-
tion g, The quotient space V/G has singular points &, 692,
,,,,le which correspond to the fixed points, Each singular
point has a neighbourhood which is analytically isomorphic to
0 in §1, Let M be a non-singular model of V/G obtained
by the canonical resolution of its singularities, First we
shall show that if Ky | # @, then |mKy\ has fixed components,
Let El""’Ek be subvarieties of M appearing in ’the canonical
resolution, From Lemma 1,2, ) we infer that there is an isomor-
phism

B, 0er)® = 100, o@mK))

and any element of HO(M, _Q(mKM)) has zero of order at least

[%] on Ei‘ Hence the divisor [I—;-] (El + +++ + E is a fixed

component of [mKMl .
Next let us consider a birationally equivaient non-singular
% %
model M of M, Let g : M—> M be a birational morphism,

By elimination of the points of indeterminacy of a rational mapp-

ing due to Hironaka, there exist an algebraic manifold M and a

M morphism Tt‘l : M —> M obtained by a finite
W‘l/ % succession of monoidal transformations with
g * . - . ft
M —=> M non-singular centers such that T, = g1
*

—> M is a morphism, Let §& be the exceptional divisors
appearing in the monoidal transformations, Then for any element

¢ -—9HO(M, g_(mKM))', ﬂ,lk(ﬂP) has zeros on & Hence if lmKﬁ\
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# 0, \mKMl has a fixed component, We let E£,, i =1 k

A

be the strict transform of Ei to M,
First we show that there exist at least one ﬁi or an
irreducible component 81 of &€ such that th(ﬁi) or 1t2(81)
is a divisor on M*, Assume the contrary, Then ‘itz(Ei) and
11:2(6) are of codimension at least two in M*, Let us consider
the holomorphic l-form w on M, Since M is algebraic, w
is a closed form, Hence we can choose a coordinate neighbour-
hood U of the fixed point Py in M with local coordinates

Z13Zgs0eesZy with center Py such that w has a form dz1

and that the involution is expressed in the form-

(21322’ .o -:zn‘)_—_} (-zls-ZZQ ' EE) -zn) .

The form (w)ze HO(V, §2(.Q.‘17)}G induces a meromorphic section ¥
’ . k
of _S_z(ﬂ;'l) which is holomorphic on M - |J E Therefore the
: ' i—-].

. * ' . -
pull-back "T-l(’#)) is holomorphic on M - U"Tll(Ei), On the
i=1

BEﬁer hand if S 1is the smallest analytic subset of M such
that T, is an isomorphism on M - S, then ”'CZ(S) is of
codimension at least two by Zariski's Main Theorem, Hence 08 (Y)
induces a holomorphic form on M - {TC (U '":1 (E, )US)}

By our assumption 'L' (’I’Cl (E )) is of codlmen51o_n at least two,
Since th(g (¥)) = ﬂ: (¥), '8 (‘Vf) is holomorphic on M*,
Then by Lemma 1,1,)'{1 must be holomorphic on M, But by Lemma

1.3,0, ¥ has a pole on El" This is a contradiction, Hence
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f;‘cz(Ei) or ’I‘Cz(gl) is a divisor, For simplicity we assume that
TCZ (E) 1is a divisor, By Zariski's Main Theorem, there exists
a nowhere dense algebraic subset S such that S # El and
that at any point of S-El, ’FEZ is an isomorphism, Hence for
. *
any element %€ HO(M, g(mKM)) g (¢) has a zero on ﬂz(El).
. * % * .
Since sz(g @) = Tt’l(cf)_ By Lemma 1,1 if ]mKM*\aé @, then

| mKy#| has a fixed component T, (E). Q.E.D,

Remark 2,2, @ The above theorem holds for a compact
complex manifold V if we assume, furthermore, that a holomor-
phic 1-form w 1in the above condition @ is d-closed,

@ In the above theorem, if we assume that any fixed manifold
of the involution g 1is of codimension at least three and that
there exists a holomorphic l-form w on V such that w has
no zeros on a fixed manifold F, and that w‘F = 0 and g*(w)

= - w , then the same conclusion holds,

§3, Now we prove Main Theorem, For simplicity we shall

prove the theorem when n = 3

(3.1) Let C be a non-singular complete curve of genus g

Suppose that C has an involution 2 which has at least one
fixed point, We set ¢ = ¢/<1> . Assume that the genus of é
is strictly greater than one, Let S be a surface in YPB

defined by the homogeneous equation

10 10 10 10
0+z]_+z2+z = 0

4 3 .
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S has an involution h defined by
h : (zO:zl:ZZ:z3) _— (zo:-zl:-z2:z3),

The involution h has twenty fixed points on S Let S be a

non-singular model of the quotient variety S/<h>, Since there
exists a surjective rational mapping of S onto the surface F

in @3 defined by the homogeneous equation

5 5 5 5 _
0 + z] + z, + zy = 0,

we have 2 K(§) 2 X(F) = 2,

z

Let g be an involution of V = CXS defined by
g : CXS —— » CXS
(z, Wr—— (1(2), h(w)),

Since the canonical series |K of the curve C has no base

CI
points, there exists a holomorphic l-form «w on C which

does not vanish at a fixed point p of C, We can consider

w as a holomorphic l-form on V, Then the conditions (1) and
(2) in Theorem 2,1 are satisfied, We let M be the non-singular
model of the quotient variety V/<g>, By Theorem 2,1 M satis-
fies the condition 2) in Main Theorem, Since there exists a

surjective rational mapping of M onto 6><§, we have

3

32« = «(Ex8) = «(€) + «(5)
(3.2) Let E be an elliptic curve, We set V = EXS
where S 1is the same as above, V has an involution

g : EXS ——> EXS

(z, w)—> (-z, h(w))

10
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where h is the same involution as above, It is easy to show
that V, g and a holomorphic l-form «w on E satisfy the condi-
tions in Theorem 2,1, Let M be a non-singular model of V/<g)
obtained by the canonical resolution of its singularity, Then
M satisfies the condition 2) in Main Theorem, There exists a
surjective rational mapping f :D&———>§ whose geheral fibre
is the elliptic curve C, Hence f : M——3S is birationally
equivalent to an elliptic threefold, From the canonical bundle
formula for elliptic.threefolds (see Ueno [6], Theorem 6,1), we
infer that KM) = 2,
(3.3) Let C,1 and w be the same as those in 3,1, We let
T Dbe an abelian surface, We set V=CXT, V has an involu-
tion g defined by
g : CXT ——> CXT
(z, W——— ((2), -w),

It is easy to show that V and g satisfy the conditions in
Theorem 2,1, Let M be a non-singular model of the quotient
variety V/{(g) obtained by the canonical resolution of its
singularities, There exists a surjective rational mapping
f : M—> & whose general fibre is the abelian surface S,
It is easy to calculate the canonical bundle formula of such a
fibre space (see Ueno [8]) and we obtain

kM) = 1,

(3.4) Let V be an abelian variety of dimension 3, V has a

11
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natural involution
g : V——>V
> -z
A non-singular model M of the quotient manifold V/{g> obtained
by the éanonical resolution of its singularities is usually
called a Kummer manifold, (M) = 0 and M satisfies the

conditions of Main Theorem, Such a manifold has been studied

in Ueno [7], §16,

Remark 3.5, Let M be an algebraic threefold defined in
3.1, It is easy to show that {mKM)¥ @ for any positivé integer
m, The m-th canonical mapping
émK:M——MPN
éssociated with the complete linear system |mK| is a morphism,
If m is sufficiently'large, the image QHKKM) is analytically

isomorphic to the quotient variety V/<g). Hence the image

variety @mK(M) is normal,
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