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On Essential Selfadjointness of Dirac Operators
Masaharu Arai
Fac. of Economics, Ritsmeikan Univ.
§1. Introduction. The Hamiltonians in quantum mechanics

are postulated to be selfadjoint operators. On the other hand
they are given mostly as formal differential expressions. So it
occures the question whether these expressions determine self-
adjoint oﬁerators uniquely or not in a suitable Hilbert space L.
For example, the Hamiltonians in relativistic quantum mechanics
are given by the Dirac operators:
(1.1) T= - i 23’, X, 3>3x. +V, i=y-1,

j=1 J J
where V = V(x) is a U4x4 symmetric matrix and uj are
LxL4 constant symmetric matrices satisfying the anti-commutation
relations

(1.2) X O+ O ol =2 & I  ( 3,k =1,2,3).
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Now, let ¥ be the Hilbert space H :[La(RB)]4 and
&, be the linear subset &), = [CO(RB\{O})]L*. Let T
be the restriction of T on & . Then, under each assumption
mentioned latter, the range of T  1s included in e, and the

operator - T, 1is symmetric in gﬂ . Thus our problem becomes:

0
Is the operator TO essentially~selfadjoint?

§2. results, Many. arthers have obtained the affermative
results on this problem under some assumptions on the potential
V. Their assumptions will be, I think, classified into two
groups:

(I) (Coulomb type) VL wAxl,
where |V| denotes the norm of symmetric matrix V. ﬁnder this
assumption, it holds the inequality
2.1) Jwul £ a Hsouu + b Jlul, Vuﬁ@o
with a=2k and b = 0, where So is the operator TO with
V=0. Thus T, is essentially selfadjoint if k < 3. This

is a result of Kato [T ]; see also [8‘;chap.V;,§5.4].

(II) (singularity more gentle than the Coulomb type )
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(1I1.1) ,|V‘el'1oc ... (6rossl3]).
(II.2) (Stummel type ) The function of x
Uf lV(x)|2 |x~y|"l‘a dy
k-yls1
is locally bounded for some €>0. ... (EvanslL21]),
Now, we remark that the inequality (2.1) holds with
arbitrary small a under the assumption. (II.1) or (II.2)
without the underlined parts; see also JSrgens[;Sj. This is
also true under the next assumption without the underlined parts;
see Schechter [11; p.138]:
(I1.3) The function of x
J\ [vix)l 2 |x-y) "t ay
x-yI<8§
is locally bounded and tends to zero as R 0 wuniformly

on every compact set.

On the other hand, it holds that

Theorem 1. Let VR be the potential defined by
vB(x) = ¥(x) for |x|< R and VR(x) = 0 for |x|>R

R

and T  be T  with V replaced by VR, Assume that TRO (Yr>o)

is essentially selfadjoint and the domain of its undque selfadjoint
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extension coincides with the domain of SO*, which is the Sobolev
space [HY)Y. Then T is also essentially selfadjoint.

Combining with these results we have

Thereo@ 2. Let V= Vy o+ V2 + V3’ where Vl satisfies
the assumption (I) with k< %+ and V2 and V3 satisfy (II.1l)
and (II.3) ( with the underlined parts ), respectively.

Then, the operator T0 is essentially selfadjoint.

This is essentially a result of Jorgens [53].

Now, let us return to the assumption of type (I). We
restrict our attention to the potential V to be a scalar q(x)
times the 4X4 vunit matrix I;

(I.1) V(x) = q(x) I,
or to be more restriced one:

(I.2) a(x) = k/ix].

Then, Rellich [i0] and weidmann [ 14] show that under the

assumption (I.2) TO is essentially selfadjoint if and only

if k| <{3/2. The "if part" is extended by Schminke [/2], and
Gustufson and Rejto [4] under the assumption (I.1l), and by Kalf

[6] under the assumption [I].
Comparing with these results and Theorem 2, it occures the



14

question whether one can revlace the number $ in Theorem 2 by
more grater one or not. I claim that this is negative:

Theorem 3. For any k> %+ there exists a matrix V(x)
such that it satisfies (I.1) and the Dirac operator To with
this potential V 1is not essentially selfadjoint.

Although Theorem 1 is similar to a special case ( Remark
5.5 ) of Wheorem 5.6 of Jorgens[ 5], we shall give another
proof of it in §3. Our method is based on an idea of Chernoff[1].
In §4 we construct a potential V which has the properties
stated in Theorem 3,

83. Proof of Thoerm 1. Let us consider "a-. solution of
the equation
(3.1) du/dt = 1 Tu,  u(0) = u e[m']",

Standard arguments show that

Lemma 1. Let u be a solution of the equation (3.1)
in [Hl([—to,to]XRB)J4 and put D, = {'XGRB;‘X-XJ <La- |t} }

for |tls t, < d. Then, we have,

(3.2) j |u|2 dx __S_f |u|2 dx.
D D0 ’

tt
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In varticular, if u, =9 in D, then u(t) = 0 in D, and
if supp u, CC {XGRB; Ixl< R}, then supp u(t)Cix; |xIKR + \t\}
for [tl<¢t.

Let Ql be the set of c4valued functions which are in
[Hl)& and have compact supports.

Lemma 2. Let u € ébl. Then the equation (3.1) has
the unique solution u(t) & o@l, which satisfies the equality
(3.3) fuct)| = fluCo)].

Proof. Let u € Ql and supp u, C_{x: le<R/2}.
Then the equation du/dt = i TRu, u(0) = u, -~ has the unique
solution u(’c)é[Hl}L‘L satisfying (3.3) since TRI[H]'JI+ is self-
adj;)int by the assumption of'_Theorem 1. The derivative du/dt
is strong sence so that uéiEHl([-to,to]XRB)]b'. and supp u(t)
(_—_{x; Ix|<R/2 + \tU‘ by virtue of Lemma 1. Thus u(t) 1is a
solution of (3.1) for t < R/2, which proves the present
Lemma since R can be chosen arbitrary large and the uniqueness
follows from (3.2).

Proof of Theorem 1. Let T, =T ]éﬁl. Then, it is

6
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easy to see that the closure of T0 = the closure of T1 so that
T.¥ = T % | ‘

1 ) 0 Let ‘Pt be solutions of the
equations To*v)+ = Tl* ‘//4_ = +1 Sb+ and u(t) be as above.
Put  £,(t) = ( u(t), P,). Then, we have (d4/dt)f,(t) =
((a/at)ult), P,) = A2 u(t), Py = (u(),+1 ) = + £(£) =0

. +t
that f+(t) = f+(0) e” . On the other hand the equality (3.3)

implies that f_ are bounded. Thus we have £,(0) = ( U, %’4_)
= 0, which implies yj’ﬁ = 0 since uoe @1 is arbitrary.
Thus we complete the proof.

§ks Proof of Theorem 3. We define, as is done in standard

textbooks-on~quantum mechanics, the constant symmetrix 2X2

matrices 0‘3( j=1,2,3) by

o= (7o), w i) m - (G 2).

They satisfy the relations
O':}.O’k =10,, (4,%1) = (1,2,3) in the cyclic order
and the anti-commutation relations

030-1/{+ O’ko'jzaajkl.
( Here and in the sequel, we sometimes denote by I the 2X2

unit matrix and sometimes the 4X 4 unit matrix. But no confusion

7
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will occur.) Define O by OS = (o 05 ) Then, the equality
J 0—-. O

J
| g5 03
D(juk = ( j¥k O ) holds so that O{'s satisfy the anti-
O 050% 3
commutation relations (1l.2). Put 0; = Z ngj/r and
j=1

K, = ﬁ, O(jxj/r, r = |x|. Then, the anti~commutation relations
j=1

| 0 -I
yield 02=1 ana OZ=1I. Put J = {I o] and
I 0
U = o i0 |- Then, it holds that
r

(5

Define 03' by ag.! Oj'G’) and the differential operators
J

J
Mj by My = xk'B/axl - X,79/%,, where (j,k,1) = (1,2,3) in the

cyclic order, Then, we have

p) _ 2
(4.2) 13‘2.0(3 fox ;= DA ZJ} o Yox,) =

i

2 1 -1
O(r( ZJ; O(j r Xj a/ax;j + Jéko(:] 0(k r X,j ?ij)

-1
O(r( g/ér +1ir O(r ZJ’J 03' Mj)'

i

Now, let u Dbe a solution of the equation

(4.3) Tu= -i Z;0(33/axju+Vu=Xu
J
and assume that w = Uu depends Only upon r. Multiplication

from the left by U yields

0O O

0 —ZiI] w + 0vo—ty = AW,

(4.4) JUCHIT Ly + ir'lJ[
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0] 0]
using (4.1),(4.2) and the identity U(AZS OE'Mj)u = (O -2iI) We
J

Let the potential V be

al ib B;)

-1
(405) V(X) = r (—ib O,_I.‘ aI

1 .y [al bI :

Then UV = r , SO0 that the eigenvalues of V
’ bI al
are (afb)/r. Assume moreovere that
-1 t
W =71 ( f(r),f(r),g(r),g(r) ).

Then, the equality (4.4) reduces to
-1
r

1o T+ r'l(bf + ag)b= 28

(4.6)

gt - r—l

g + r'l(af+bg) = A f.

As to this system of differential equations, as is pointed
out by Weidmann{]4J, analogie to the Weyl's alternative theorem
on Strum-Liouville equations holds;

Lemma 3, (i) If every pair. {f,g} of solutions of
(4.6) sagisfy

1
(4.7) j; |f|2 + Ig\a dr < +o
for some A= )ﬂ), then every pair of solution of (4.6) also
have the property (4.7) for arbitrary A €C.

(ii) For every non-real L ; the system (4.6) has at least

one non-trivial solution which has the property (4.7).
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The above assertions (i) and (ii) are also valid when the
inequality (y4,7) 1s replaced by
= 2 2
(L.7)! Jl \£\ =+ ‘g\ dr < +00,
Let (b-1] % la|. Then, the system (4.6) with X = O has

a fundamental system {f+,g+} = rf)i{l,(l-bj/f)/a} of solutions,

where 0, = t,l(b_l)a-aa . The both pairs {f+,g+% satisfy
(4.7) 4if and only if (b-l)a—a2< #+, and then both pairs have
not the property (4.7)'.Thus Lemma 3 shows that if
(4.8) > (v-1)%-a% & o,
then the system (4.6) with non-real >L has non-trivial pair
72 2 ’
{f,g} of sclution satisfying f 1£1 + |g|© dar < +069, Then,
N
u is a non-trivial solution of (4.3) belonging to % since
> oo . : :
Nl = Jw)® = 8 f 1£] 2 + |g|2 dr < t02, The definition of the
0
adjoint operators and integration by parts show that u € o@(TO*)
and To*u = Au. Thus T_ is not essentially selfadjoint since
A 1is non-real. Let, for example, b=} and a > O. Then,
IV(X)I = ($+a)/r and the condition (4.8) is satisfied for a% %.
Last, we remark that the operator To with V defined by

(4.5) has a selfadjoint extension. Indeed, let J be the anti-

10
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linear operator defined by Ju = oz’ U, then T, commutes with

~ . ~
J 8o that To is J-real.
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