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INTRODUCTION :

We investigate asymptotic expansions for the levels of

H(’f\’_ m) = A rV

in the limit \/(4?- ;‘KV/-YL —> O . Here V is a spherically symetric potential of

the type encountered in molecular physics namely

4 i) ve L

ii) V has an absolute minimm V_ for X =X )XO:I:—O .
. , N+
iii) V() = Z %(X—ﬂo) + R O\) where RNH(X)-_ O (X=X,)

as X->Xo, this expansion being on some interval J cemtered around Xo .

iv) ;
;22%: VRS>V, .

This problem arises in connection with the semi-classical limit of quantum

mechanics and also with the Born-Oppenheimer approximation [l]

That this perturbation problem is singular is well-known [2 3] ‘and can
be seen very easily from the fact that the essential spectrum of H (f, m) is
%
[Vw ,o0) as long as %‘r’\_ # O although the spectrum of the limiting opera-

tor V is usually continuous and comsists of [V ,©® ).

Our method uses mainly the ideas of Maslov [_3] and some recent estimates
of B-Simon [4] on decay properties of eigenfunctions for Schrodinger operators sup-
plemented by some suitable uniform estimates for families of the type encountered

here.

Our result expressed in Theorems 1 and 2 below is that discrete levels of

H (fi, M) admit asymptotic expansions in the parameter

=\

LM

up to order N as expected from W.K.B. method or Born—Oppenheimér approximation.
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We give preécriptions for the computation of terms in this expansion. In the case

N = 2 we obtain the well-known harmonic approximatiom.

We will not be concerned in this paper about finding the best approximation
scheme for levels of H K, M). In that respect the use of expansions in K does not
necessarily leads to very good estimates ; however, they are interesting both from a
practical and phenomenological point of view since perturbation coefficients can be
easily calculated from the well-known harmonic osc:.llator elgenquantltles and have in

applications, e.g. molecular phys:.cs, direct physical 1nterpretatlons.

II - THE MAIN THEOREMS

We refer to Kato [_l] for the standard material used in this chapter on
quadratic forms associated to SchrBdinger operators. Let V satisfy assumptions (A)

. . . . z :
and tl be the associated closed symmetric quadratic form, densely defined on L (YRS)

Let to be the Dirichlet form assoc1ated to the usual self- adJOlnt extension of - /\
on LT(IR®)

on : _

Then t(WK) = l/(l'to + t-d. ) %% 7 V] , 1s defined, symmetric and closed on

Q(to) N Q(tl)’ where Q (») denotes the quadratic form domain. Obviously Q(t(W)) D
C§° ({Rs) so t(®) is densely defined and since under our assumptions it is bounded-

below thére exists a self-adjoint operator H (X) associated to t(«) such that VC})@(H(K)’

HK b - _u®*ad + Vo

One can show that

Go () & [ Voo, ©°)

where V = inf 1lim V(X)
o)
X ~» o

Since V is spherically symmetric one can perform the usual angu&ar momentum
+
reduction ;5 then t (K) is unitarily equivalent to the direct sum { m 0 )
> 0 =

where tt(w) is the clésed quadratlc form on L ( R ) given by :

t&(m wl*cln1~ t p (%)

’ +
where ('}(0 is the Dirichlet form on L R)
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CL L9 €] - +J@m e c{,}a

D -

G (dy) = {(fe[’.'(m*)') (f,el_zUR*) and o) =o}

~ ©___
Eﬂ) L (O E]= j Py [ 9;%22 F Vo] €0 dx
where Q(A-) is defined in an obvious way. Bothoforms are closed, symmetric, densely

defined and bounded below ; so one has ' N N
GEm) = P N QUEW)  and bW

is closed on this domain. Let (W) be the corresponding §Elf—adj0int operator.

The discrete spectrum G:L[H(Vﬂ) is related to the A‘Q:\ (%L[W)) ! A by
) 6y (HW) = (U G (Thy W)
L(HO) - U 6y Chy

?_"YY\_, .
To investigate the speétrum of Y/\1(W) let us write
L 2 - s 2 -1
Lo(RY = Leoe "oy @ L(-67%, v#)
and consider the quadratic form :

o hon) 2 (Va- ) @ [dy v 0]

where t“tl\@) is given by :

J;&M)L“’,?]:j B9 W, 05,0 §oodx

_w"xo

with
2
VPR 15 ES TN ol N0 S s ARV
(3) W0 = ¥, +W R i

v B -t
. and dK is the Dirichlet form’\c}n L2 - BN XO, v ). The form Cl_w + J\){'(W) is
clearly obtained from d"h + t}\ L(’W) by the following canonical transformations :

}

1°) A coordinate transformation Y\ —_ Xofw)ﬁ

2°) Substraction of the constant V0
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-2
3°) Multiplication by ¥

From this it follows that the relatig_g’ between eigenvalues

E, ) & 6 (hyoh) ~
located below w"‘[_\lEe: No ) (e.ds'seme‘\‘}:agxap +M\uju_%ﬂ '211(143)

and these EL(W) of the self-adjoint operator L (_K)associated to tL(W) is
—_ ‘ _—
) E’L(m: V, + W EL(W)

since the coordinate transformation is implemented by a unitary operator

Ge PR -1 el %, odunere
(5) (‘fw(ﬂ = WY+ R)

. .
we can now state our main resultss

THEOREM 1

Under assumptions (A) on V eigenvalues Eg' (W) of ‘?‘\,t(,w) , %‘:_ 0)4,24, -
have asymptotic expansions to order (N-2) given by the formal Rayleigh - Schrodinger

perturbation series for the operator on L2 (R) :

(N) ¢ )
(6) ' %\.‘{(W) = - ‘i): + Wt )
- OL\‘?. .
where W{ (X) is the sum of the terms of degree 4 N -2 in the K - expans‘ion
around O of \,\l'f..(w) R

REMARK :
(N)
It is important here to notice that the operators ‘L(W) are not self-
adjoint if W g’{\f\') is not an even polynomial. However, it is always possible to

compute Rayleigh - Schrodinger coefficients formally from the unperturbed

2) 2 y
7 /?/LL = Q/L = - C_L. TW@

h Ly
e WP ¥ VO

On the other hand since obviously only even powers of K appear im the
expansion of eigenvalues, one can restrict omeself to the consideration of even N's

only so that this mathematical problem does not arise ( \/\/(' )(VT) is then an

"



27
even polynomial in K).

Concerning eigenvalues and eigenvectors of H (VY) one has :
THEOREM 2 -

N
Under assumptions (A) on V, eigenvalues Eze}VT) of H (K) corresponding
- to a total angular momentum £ have asymptotic expansions to order N.
These expansions are given in terms of those for EiL(VT) by the relation :

/\._

K - H«zEg(W)
E{( Y=V,
REMARKS : |

a) This theorem is an immediate comsequence of theorem 1 and the angular momemtum

reduction procedure that we have pérformed leading to the relation (1)

b) For N = 2 cne obtains in particular the so-called harmonic approximation

(8) EL(W}: V, +R* ) W+ ow?¥) (W—>0)

where n can take any positive integedbalgsr
For N = 3 the correction of order 3 to E%LUK> vanishes for symmetry reasons (eigen-—
vectors of have a definite parity). As indicated before this will then be the case

for all corrections of odd order.

For N = 4 one obtains an expansion

g{(W): \/0 *VTQLLZ“'H)"J ¥+ \1#1‘2_:%} +§w] ¥ OLWE) (ko)

where Sin is an anharmonic correction which can be easily explicited. If ome takes
n " O one obtains the so called Born-Oppenheimer approximation.
If N can be taken arbitrarily large, as is the case in some specific examples

of molecular physics one gets asymptotic expansions to any order.

c) In the course of the demonstration of Theorem 1, one shows that if ({va is
an eigenfunction associated to an eigenvalue of the form (8) then supp (fL.W (_'E?('X°’0°)
and (YL,VT converges strongly to the ntb excited state of the harmonic oscillator
operator (7). This fact, together with the relation (5) between 2,W' and the radial

part of the associated eigenfunction &P in Lz( R3) for Yﬂ w)

{m %
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giving :
4;7_ N -}
© Voo, - v x" ooy e,9
Lm W Lw fm
shows that Qo VT is more and more concentrated around X = Xo as can be expected from
\
the fact that in the classical limit K = 0 the particle stays at these extremal po-

sitions minimizing the classical energy (with V0 as a minimal value).

Proof of Theorem 1

For convenience of notations we will now drop the index §.
An essential step in the proof will be the stability'of eigenvalues for the unperturbed
operator h under the perturbation h(K) - h, namely the fact that for K sufficiently
small a given neighborhood of contains one and only one eigenvalue of

h(K). As shown in (2] this will be a consequence of the following

Proposition I ~

Let %, Im 2 # 0. Then R (%, K) = (h(K) - 1»3-)‘~1 converges in the norm topology of
operators to Rh ) = (h - Z)_]

Proof :

Let E >() and define an interval IE centered around Xo by
VKX -V -XV R < e VxeTg

Then \'/ Y > 0

2V S 7T
W) = X2V O] cextait o T

where %’ is a comstant.

Let us write a smooth partition.of the identity on R.
- ) e+ )

where }C (K) (resp. zln(VV), ?L+(V(§3 is a smoothened characteristic fumetion for

K ! 1 (resp. for the half-line on the left and right of K_1 I ). Then one can write :

€
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W R0 =Ky (1] < IRz, 1) ( 1)+, ()
IR (Kt + 0]
+IRET)-R ) Tl

The two first terms of the r.h.s. of (10) tend to zero ; this comes from the fact
that both resolvents are of the form (A + W - Z)-l, Im Z # 0, where A and W are

.non negative operators and

Y\ J~LLm ZQ+ (€)=

Then using the fact, .proved in App. I that H (H u \/\/-" 2) VW \l is bounded
one gets the desired res'ult.v The "an‘alysis of the last term in (10) uses the esti-

mate (9) ; write

av (Riz6) =R, )0 = Riz6) (Win) XV e R, (2
| N NP
+[_R(a,m R, ! U(zcL 7 (mmm\
where we have usec:i the identity

an (27 p] = (A-xy LB AT (A-2Y

ct o
\
The first term on the r.h.s. of (11) is bounded by )/\ .})H 0 H )

On the other hand, the characteristic functions of the supports of I'(K) and

I"(‘{) tend strongly to zero and since R.h€ﬁ} is compact, their ‘produc,ts tend .1n

norm to Zero ; then it is enough to show that \R ) < fW) H and
H (9:) K fK}“ are bounded. This can be shown e.g lc:%rxusing the closed

graph theorem for the adjoints and the technlque of App.l .

Finaly the l.h.s. of (10) is bounded by (c_‘ Y\ r\ 5, )“ + O(W) {“_’93)

Since ¢ can be taken arbitrarily small and " iY\L ‘\» (il is bounded

(a2 simple exercise) the proof is ccmplete. _

Stability of eigenvalues will play an important role in the foregoing discussionm.

However, despite thié, the Rayleigh-Schrddinger perturbation method cannot be

applied directly to the perturbation h (K) — h for many reasons e.g. :

.
148

-

P
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1) The difference between h and the L2 (= =, -K—IXO) component of h (K) is never
"small" ;

2) W(K) has a singularity at X = - K—]Xo and unperturbed eigenvectors of h are not
in D W ®) |

3) W (K) does not admit a regular perturbation expansion in K.
(The expansion around Xo is valid only locally and the coefficients are polynomials

in X that is non small perturbations of h).

We will see that all these points can be taken care of by using decay properties of
eigenfunctions as expressed by proposition 2 below. According to them one expects

that only the part of W(K) wher the wave-functions are non—-negligible should contri-
bute significantly and one should be able to replace W(K) by regular perturbations

for which Rayleigh-Schrodinger perturbation series make sense. .IL will remain to

show that such series are precisely those obtained from the formal power series
expansion of W (K) in K.

Existence of such regular perturbations will be a consequence of the uniform estimates

proﬁided by the next proposition.

PROPOSITION 2 :

Let k? (X) be a normalized eigenvector of h(K) associated to an eigenvalue E(K).

Assume that E(K) » A ¢ Jd(h). Then for K sufficiently small
K~>0 R :

2
. -1 d
i) Supp k‘F (K) C [_K X, o ) and (- g—)—?*- W (K)) LF(K) =E (K) LP (K)

ii) Let U (¢ , K), a € R, be the unitary group of multiplication by
exp (i o Jo ¥ W(K, X) dX. Then the family { U (o , K)LF (K) } has an analytic

extension to the ball |a < | -which is uniformly bounded in K.

Proof :

i) is a consequence of the decomposition (2) and the fact that since K 2 Eﬁw - V&]
—_——Yeo

K—0
tly small.

the component ofLF (X) in L2 (~o , - K-IXO)'must vanish for K sufficien-~
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To prove ii) let us first paraphrase Simon [4‘]to show that \,{_({;{‘\f)({(\/{‘)
can be analytically continued to the ball . i J\ \ <& {1 .

Consider the family

(13) {luv\m: U, 4) Iy 1o, o)

A simple calculation shows that h(K,®{ ) is the self-adjoint operator associated

to the quadratic form (see (2))

L .

a0 Ergdy = bee) LT - B0

A
where o3 ~— i |
AR z’{{g;( vwiey L %(Yx) (X
2 R J
X,
1f in (14) we now let o be complex it is easy to see that for {J} < | one
has Q (t(R, A )) = Q (£(K)) and t (K,¥ )[(x‘rf] . is anf'alytic in K in that

domain for r|r £ Q} ( t(‘&)) P
So t (K,d) is analytic of type (a) EZ} and accordingly h (K,¥ ) is a holo-
morphic family. From analytic perturbation theory f2] we can deduce that the
eigenprojectors P (K, d{ ) associated to the eigenvalue F(X) ( £ & { (W,a‘\) Vc{)
are analytic as long as l,,(\{} (and E (K) is not absorbed by the essential spec-
trum of h (K,{) which does not happen for K sufficiently small and ! 4} ).
From this and the fact that P (K, & ) is a one dimensional projection operator
having LL(J\I'&"\, (E’{‘A') as an eigenvector for { real follows the assertion that
this vector has an analytic extensicn. To show uniform boundedness in the ball
{1 ) of the family P (K, ¥ ) it is enmough to show that
(15) e L Pw, 4 Pd) VA VY AL

W=, 0
' ) ,
where P (¢l ) is the eigenprojection for the eigenvalue i\ é“c{_( OK) H\L\)with
b, a8 ra(xd sl )yt
s =2 aod (X sl + U)X

This in turn is a consequence of the norm resolvent convergence
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. L : -\ C -1
’Y\*‘Qw\ tfm(mv‘«h%) = (W (d)-1)
>0

which can be shown along the same lines as Prop. 1 modulo some elementary modi-
fications due to the non self-adjoint character of these mew operators.
From (15) and Banach Steinhauss theorem one can deduce that the family
is uniformly bounded in | | £ 4. for K sufficiently small which shows part
ii) of Prop. 3. ' '
We now define regulafisations to order (N-2) of . W(K) as follows : under assump—

tions (A) on v 1t is not difficult to see that W (K) admlts an expansion
. W -
(16) \.-'\,f{‘-/\',";/.,‘; - 2 " P (74 ‘1" NN () %)

LA

where Pn is a polyﬁomial with degree n+2 (in particular Po = XZV" (XO)) and

o o un e N- | BV
an [, M0 < A0 GOk , KeW I

where I is the interval J - Xo and Q is a polynomial of degree N + 1. Let

v S . N-L o :
ao Wy = xPVTRY F 2 R R K(W,X)_
' Cowr=2

where K:(K) is a smooth characterlstlc function for the interval K S.)
O L8 . The operator
)
(N e N
(19) (L . (W) = =& ¢ W,L (W)
. y i
ANt

is obviously self-adjoint with the same domain as h. One can show the norm resolvent

N . .
convergence of h( )(K) to h along the lines of Prop. 1 or more directly by noticing
that for Im % # O

Ny Lo
(20) (, yﬂ ) ~ (-1 - (e\ {

N-% F"
W - % ( ;EE: (V<?>(fl“%
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Since:> d (Pn) = n+ 2 and ‘KX] is O(X' ) on supp ?{:(K) one has

o LK™ B0 (e cn x| = 0 ey s

On the other hand (1 + X2) (th - E)_l is bounded so that the proof of the norm
convergence to zero of . (20) can be easily completed. We are now ready to show

that ng) (K) is a good substitute for W (K) :

PROPOSTITION 3

Let (E(N)_(K)) (resp. (E(K))) be a family of eigenvalues of hg) (X)
(resp. h (K)) such that | L
, (l :L\“\ E-(tl\{.w\} - [al‘h‘,} Erey = N e 65 { £L)
Wes o Were

Let (P(Nl) (K)) (resp. (P (K))) be the corresponding eigenprojectors. Then

Her (BN @-n@nr@=0®& " (x ~>o

D E®-EM® =0 —_—

iiiy | - p™ ) P () = o ™ h et

Proof :

To prove i) we denote. by (‘f (K) a normalized eignevector of the one dimensional

projectigr. operator P (K). We have to estimate the expecAtation value(([)ﬂ-()[%ﬁ)‘-(%eux)mlg

. ) - | |
which is equal to ((-ﬂy()lwiﬂ(m \WI("() 1\{‘(\[)) for K sufficiently small according
to Prop. 2 i). This last quantity equals (U{‘{;{”RN(W) X (4) ‘ C{{n\,ﬂx

where RN is defined in (16). According to (17) the first term is bounded by

N=t 7 (g 4 :
‘({ < ]ﬁ("ﬂ | C\) ((W\—) hence uniformly bounded by prop 2 ii) and assump-
tion A4) on V which imply uniform exponential decay for the functions (f‘(lf()

As to the second term onme can rewrite it as

: a -1 -1 .
[Erey-2 | ((4-?<(W)W(W)I(PLM—%) W) ) )
' —af "

the middle operator is bounded by App. 1 and ”</| -—p’l,()) ({(W) “: O(ﬁ ) (0\70>
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by the uniform exponential decay property. This shows 1i).

Let us now write for Im 2 # O : l

: , (M :
Eaey - EMny- (EM-2)Em -1 (T 0m190m)
(90 1R™rz,m R (2 0 | Qo)

(21

AN (N -~
where R_m E,W):(?\’(W)* 1‘) and

C?(h}ﬁ\ is a normallzed elgenvector of the one dimensional projection operator
(N)(K) ; it can be choosen so that - || L?{ )V{) - (?[W)]s =2 °

It is then sufficient to show that the last factor on the r.h.s. of (21) is

O(KN—I). This can be done along the lines used in the proof of Prop. 1 by inser-

ting a decomposition of the identity
T XR) + (T n)

) -1
. s -
in {ront of (f(K). The term (:I - *:LWW) gives a contribution O(e ak ).

For the term ?((ﬁ)we use an identity analogous to (11): »

| (N [y Ny

22 R(N(‘i)w,\,u R(% W)= R a6 (WK) = W, 1)) 100 Rz, w)
+{RMrz,m -R(&»,'ﬂ)(”" R TCR) RE

-1
The second term on the r.h.s. of (22) gives a contribution O(e aK ). The first

one gives a contribution

) ‘ v
(%) 1R 10 i o)

1.

which can been shown as above to be O(KN

We now prove iii) inductivelg assuming it is true for the (n - 1) lowest levels
— ~ (N h
et EMo e Gy (hen) and () € Gy (hiv))

converge to the ntb eigenvalue of h. One has

(23) M {’\(:{)(V\') - ?/\_(k()) ) f (EN) E h.(P i) &(W))
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Due to stability one can choose K sufficiently small so that

IE;WW)waMMV>§>o For jn

On the other hand, by the induction hypothesis and the fact that P(N)(K) and

P(K) are one-dimensional projection operators one has
N=t )
R(P P(r :HPmPcm = (K ),f-mvun

This together with (ii) implies that in the sum on the r.h.s, of (23) the terms
i - .
with j5§ n give a contribution which is O(KN ]). Since the remaining terms are

positive one gets according to i)

=t (N} (»H}
ey 2, '(fL\P Pm S é\\i ") - Eoc )‘1( m;(\)mxw
4L .= _ sn
é | oiﬁ”ﬁ

ed

Now one has

Z, wg

—_—
=
By,
=
=
!
_~-
{
P
S
L
=
‘\
S
—
=y
z
1
N

Voo
< =1

from which iii) results according to (24).

According to Prop. 3 if the levels of h (K) have asymptotic expansions up to order
N-2 they will coincide with those of hﬁN)(K). To complete the proof of eur main

theorems it is then sufficient to prove

PROPOSITION 4

Eigenvalues of hiN)(K) have asymptotic expansions to order N-2 given by the formal

Rayleigh-Schrodinger perturbation series for the operator

a2

dx

2™ x = - + M

where W(N)(K) is the sum of the terms of degree < N-2 in the K-expansion (16)
of W (K).
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Proof :

~Assume E.. (W) E’ﬁ A\ and let () be the corresponding normalized eigenvector

h -ﬂ. {\.fl. One has
(M)

SO CP/L[ ) Q_ p,w Q) /(1 Tenia)

It is enough to show that ‘?/LC (K) -Q and \ V() —(7- have asymptotic expan-—
sions to order N-2 whose coefficients are just those obtained from the formal

expansion (46) for W (K). More precisely we will. see f.hat the removal of
in the expression (/H ) for W( )(K) gives a contribution O(KN—I) (K-—}O)_:

) . R . axt
This is obvious for b, x) ﬂ since (] is an Hermite function having £ s a%o0,

decay so that

RICEEIN

4oty €21 o €5

for some a >0 and \f integer p. »
Let us 1nvest1gate P(N) (K).O- For this we use the representation

’

wdmw%/\ .
where C is some contour™.,” and E( )(K) and no other point in 6\(h( )(K)) or

G\d(h). Iterating (N—-2) times the second resolvent equation one gets
N-2 Y

Z { . H " 3’ N
ey 301 Pen .{.:44 R{t“ﬂ (W (%) ‘i@,‘(%) O d%
AN AT )y
TS R?(%>(W | }(F) ﬁi "})> \V\[/L U‘—/ r(% A)A_AZ

Terms appearing in the sum on the r.h.s. of (25) give contributions of the form

CER R x)/\ ) R () \kyu.«)<u Qa3

n

AQ_ A
wak Y\E,P+%+"”Ft < N-
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Since 'Rh(z) leaves Q\)(ﬂ e ) invariant (0 9<a.-) (as can be
shown e.g. using the techniques of Prop. 2)_the removal of T (X) in (26)
will give a correction () ( QX,P (-~ B‘(\'-Z(‘_M))

integral on the r.h.s. of (25) have a similar structure but with the last

. Terms from the last

resolvent replaced by R(N) (2, K) so that the above argument does not apply
directly to show that they are O(K l). But here it is enough to establish
that coefficients of the K® ' s in the contour integral are bounded uniformly
in K and 2 & C  ; this can be done using two tricks : -
First use the relation (12) to push the monomials to the right and make
them act directly on ﬁ ; One can justify this procedure rigorously by a
simple but lenghty domain analysié. Becond use Banach-Steinhaus theorem to
show that the resulting operators on th€e left of vectors )(D( __O_. are bounded
uniformly in K and 2 & C . These operators are products of factors like
A R(2) B where A = - —:—i——:l; or1; B= (K or ! and R (&) is the resolvent of
(N)

(K) or h. Using the result of App I one can deduce that such operators

are uniformly bounded in K and Z

AEQe_ndix 1 -

Let A and B be positive self-adjoint operators associated to quadratic

forms ty and tB' Assume that Q (tA) ﬂ Q(tB) is dense and let A + B be-the

self-adjoint operator associated to by *+ tge Then for all" # in the resolvent

set of A + B the operator Y-Z (A+ B~ Z)_‘ is bounded.

Proof :

V'Cf one has | | |
C (Y (heb-3) aArBR Yy <(F ez )
&%1\\{%5%}'!‘1’\!?’

— ~1 ?
Since the L.h.s. is just n \ H (A"TB "%) C‘f“

one gets

1IN

VR (AtB- 2y @Jr-n%\)/&«g’:(z-,mﬁ)fm)
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