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Distribution of eigenvalues near the boundary

of essential spectrum

Hideo Tamura
Department of Math, Nagoya University

We study in this note the asymptotic distribution of
discrete eigenvalues = (bound states ) near_the boundary of
essential spectrum for Schrodiger operators and Dirac ope-

rators.
1. Schrodinger operators

Let us consider the following eigenvalue problem

(1.1) _.zﬂ u - p(x)u=Du in L2(g1).
If p(x) does not decay at.infinity too rapidly, then the
operator ~Zﬂ—p(x) has an infinite sequence of negative
eigenvalues approaching to zero. We denote by n(r) (r> 0)
the number of eigenvalues less then -r of problem (1.1).
Ve are concerned with the asymptotic behavior of n(r) as
r tends to zero.
This problem was studied in Brownell and Clark (2),

and McLeod (3) under the condition that a potential p(x)
is sufficiently close t0 a spherically symmetric potential
and non-negetive., The purpose of this note is to study
the distribution of eigenvalues'by the different method

without assuming the above condition.

We impose the folloWing assumption on potentizls p(x);
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(1) p(x) is decomposed as p(x)=p,(x)+ po(x);
(2) p,(x) is a smooth function satisfying
' m Nt
lim 1xip, (I1x|0) = a(w) X=jX| w Wés
| X 1r00
where a(W) is a function not necessarily positive
defined on SB~1 (the n-1 dimensional unit sphere);

(1.2)

(3) po(x) is a non-negative and integrable fun-
ction with compact support, if n<L2;

(4) py(x) belongs to B%, if n> 2,

Theorem 1. Let p(x) be a potential satisfying the

above assumption (1.2) and suppose that m¥ 2. Then,
we have

'n _’ZL ",‘L_'ﬁ-
(1.3) n(r)=¢c r”* ﬁ- o(r” )
where C= (27)~2 ‘i‘;;‘ Efigﬁm—z Sf{f ) Aw dn_l is the

surface messure of SP~1, and 8+ (W)=max( a(w), 0).

2. Dirac operators.

We consider the following eigenvalue problem

(2.1) S‘f (Zdﬁggollr)‘f -p(x) P= AF  in 12(r3)4
Here ;ﬁ- -1( ) (k=1,2,3); So_(g’,, 9’,_, - ,504) is a four-

component functlon,clﬁ(k 1,2,3,4) are the Dirac numerical

matrices satisfying. the relationship oldf olg+o€gw(/ = 2(5;5; p(x) IS
a scalar potential. Throughout this section, for the sake
of simlicity we assume that p(x) is a smooth positive func-
tion satisfying

m
lim x| p(lw)=a(w).
We denote by n(r) the number of eigenvalues lying in
( -1, 1-r) of problem (2.1). Since. we assume that p(x)

discrete eigenvalues cannot admit the;\z -1 as a cluster
point.
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Theorem 2. Let p(x) be a'scalar potential with the

above condition. Then we. have
3_x 3
(2.2) n(r)=Cr* ™ +o0(r*™),

where we can give the explicit expression for the constant

e

C but we do not refer to it.

3. Sketch of the proof.

Sketch of the proof of Theorem 1

Our method is based on the fact that n(r) coincides
with the maxmal dimension of subspaces lying in Co (R®), the
set of smooth functions with compsct support, such that

(-Au, u) - (p(x)u, v)<-r (u, u),

where ( ,) meaiis the usual inner product in L2(RR).
From the above fact, we see that n(r) is equal to the number
of positive eigenvalues less than one of the problem

(3.1) -Au + 1 u=Ap(x) u.
Putting r:‘%’ ( h»>co) , we have
(3.2) -hAu+u=Ap(x) u ( 0<A<h) .

N¥e denote by Nh()\) the number of positive eigenvalues less
than X\ . Then, we have
Theorem 3.. Let pi(x) be a smooth positive potential
defined by (1.2) ( a(w)> 0 ). Then there exist C,(§) and
¢,(§) for each fixed § > 0 (small enough) such that
n " r
| Fa(A) - cnEX™ [ € §n 2N
for X zmax( ¢, ($), ¢,(5) 1n* ) (0<p)

where C is the constant defined by Theorem 1.

The involved part of the proof of Theorem 3 is to show that
0<cd<1l, Thus we can get the desired result for n(r) when

a potential p(x) is smooth and positive.

We need some lemmas in order to extend the result

obtained above to the case of potentials with singularities,
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Let us define some operators as follows:

(3.3)  T(r)= (A +r) " (py *p,) ,
T, (r)= (-A#—r)"l p, and Tz(r)_ (-A +I‘)-2,P2

The operators T(r), Tl(r) and Tz(r) defined above are
compact self-adjoint operators acting in Hl(an, the usual
Sobolev space of order one, with the scalar product
(u, V)= ((-A +r)1/2u, (- A +r)l/2v) for u,ve ul(r®) .

ﬂemma 3.2 Let p2(xj be a potential satisfying
(3) or (4) of the assumption (1.2) . M(XL) denotes the

number of eigenvalues less than )_of the following problem:

(-A+r)u=)p2(X) u , we HY(R3) . Then
/2 /2
(3.4) M(\) = ij2(x)n/2dx A,n + of i ),

where C 1is the absolute constant and the remainder
estimate holds uniformly with respeet to r ( 12r>0 ).
The above lemma was proved in [| Jand [4].

Lemma 3,3 There is a constant £O>O such that
for any 0<¢< £O’ Tz(r) has at least one eigenvalue in

(&/3, &/2),
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Lemma. 3.4 TLet m{(r, &) be the number of eigenvalues
greater than £ of Tz(r). Then there exists a constant C(€)

independent of  r such that
(3.5) n(r,€ ) < C(&)
Lemma 3.5 For any £ O (small enough), there is a
constant r(¢ ) such that for any r<r(&), Tl(r) has
‘at least one eigenvalue in (1 -2¢ , 1 -2 ).

Lemmas 3.3, 3.4 and 3.5 are verified with the aid of

Lemma 3.2 .

By means of Lemmas 3.3, 3.4 and 3.5, we see that

(3.6) 1im sup rn/m—n/z n(r) € lim sup rn/m—n/z

-1
n(r, (1-2¢
r—0 r—0 (z, ( )"7ey)

where n(r,pl) is the number of eigenvalues less than -r
of tie problem, -Au -py(x) u “lu .
On the other hend , it is not difficult to show that

(3.7) 1im inf rn/h—n(z n(r) > lim inf rn/m—n/z

n(r,p,).
r—-0 1

Since ¢ is arbitrary , by combining (3.7) with (3.6)

we obtain the proof of Theorem 1 .
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Sketch of the proof of Theorem 2.
Lemma 3.6 For each fixed 8'0, there exist operators

o0 4
A(S) and B(S) such that for jaeLcO(R3)] ,

(3.8) [36) 5,571 <[s20% 5 < [2aDe, 6T

where
E()) D 6() 0
0 7)) 0 H()

E)=( 1 +3)(=A) —2p(x) +c(Mp(x)?,

FO)= (1 +5)(=A) +2p(x) +¢()n(x)2,
eW)= (1 =D)(-A) -2p(x) -C(c?')p(x‘)z,

H(O)= (1 =) (=A) +2p(x) =6()p(x)?, end [§, V] means
4
the scalar product in L}Z(R3)]

From Lemma 3.6, by applying the same argument as in the

proof of Theorem 1 to the operators E(Sj and G(S’),
Theorem 2 follows.

The detailed proofs of Theorem 1 and Theorem 2 will be

announced in.[S]/ [é].
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