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I. Introduction

The purpose of this article is to describe two results in
the quantum mechanical spectral theory of crystals. The first
result [l] concerns a single particle moving in a periodic potential
in R3 and asserts that the resulting Schrodinger Hamiltonian
H = p2 + V(§) with V locally L2 and periodic has only absolutely
continuous spectrum. This results serves as a convenient starting
boint for considering the problem of scattering from an impurity
in which Hl = p2 + V(§) + W(x) and the perturbation W(x) is a
short range perturbation corresponding to the impurity. An elementary
theorem regarding the existence and completeness of wave operators
in this situation is included.

The second topic (work done in collaboration with J.P.
Eckmann [2]) concerns the following problem: Let HM(N,a,m) be
the Schrodinger operator for M quantum mechanical spinless "electrons"
of mass m in the presence of N classical fixed "protons" regularly
arranged in a finite lattice with lattice constant a. Assume
that the electrons are either Bosons or Fermions and assume that
they interact with one another and with the protons by VR(§i - §j)
R’ Va positive, continuocusly
differentiable and short range. Here, X is the position of ﬁhe

ith electron and Yj is the position of the jth proton. HM(N,a,m)

and-vA(gi - gj) respectively with v
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acts in @ L20R3) where ® denotes the appropriately symmetrized
tensor pioduct. Then H;(N,a,m) has a ground state eigenvalue AMN
uniformly isolated from the continuous spectrum for all N and M < N
if a and m are sufficiently large. Hence, there is a g > 0 such

that for all N and M < N, dist(AM ) > g where o is the
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continuous spectrum of HM(N,a,m).

The quantity g is a lower bound for the work function
familiar from the photo electric effect, i.e. the amount of
energy required to ionize an electron from the crystal. A non-
vanishing work function insures that the electrons do not
spontaneously escape from the crystal. The result is related
to the more general problem concerning the stability of solids,

particularly in the limit as the crystal becomes very large.

IT. Single Electron Problem

Let H be the self adjoint operator acting in H = LZCR3)

defined in the momentum representation

3 (2-1)

HO(p) = P29(p) + o I v 0(p + @), peR

qe

where I' is the reciprocal lattice and vq are the Fourier coefficients

of the locally square integrable periodic potential v(x),
(V(x) = V(x + a) = V(§ + P) = V(§ + ¢) with g,b,c
linearly independent.) The main result is the following.

Theorem 1 H has only absolutely continuous spectrum.




In order to outline the proof, we first set up some
notation [3]. Let k be any point in the first Brillouin zone
B and setT = {j €R3|j =k + q, g€ I'l. Denote by.Ki the Hilbert
K 2 - v

space of square summable functions defined on Fk with inner product

k k - T -k o ko . . .
<G Y > je H<¢ (3)¢ " (J). We obtain a direct integral

decomposition of H,

® .
H= [ Y423
5 k

k
which reduces H, i.e. if ¢ = f $@k d3k, then
)
Bé = [ H(K)™ a’k
B
with H(k) acting in Ei defined
H(k) = T(k) + v(k) (2.2)
where
T(x) o5(3) = 32 65 (9 | (2.3)
and
v () = 1 v, of@ @

qel
T (k) obviously has discrete spectrum which is bounded below,
and the resolvent @& - T(k))_l is Hilbert-Schmidt for z in the
resolvent set of T(k). Since (z - T(k))—l is also Hilbert-
Schmidt, it follows that H(k) has pure discrete spectrum which

is also bounded below.

2

x * 4

onn

Let U, : £

k k e B be the unitary map defined

Up 05 (3) = 6N (5+K), Ser . (2.5)



Then we define the operator

U H(k) U "Ll HO) + 2ke T + K2

75 (0) .

(2-6)

with
J d(3) = j¢(j) jel . (2-7)

Hk(O) is thus unitarily equivalent to H(k). Although Hk(O)

is defined for 5 € B we can extend its definition to complex
values of k by the rhs of (2-6). Because the domain of the
resulting operator family Hk(O) is independent of k, Hk(O)
forms a self aajoint type A holomorphic family in each of the

components of k. Assume now that the k, direction is perpendicular

3

to a Brillouin zone face.

Lemma: Let k; and k, be held constant and real. Then each

. k : .
eigenvalue An(k) of H'(0) regarded as a function of ky may be

taken holomorphic in a neighborhood of the real axis. Ay (k)

is not constant as a function of k3.

The holomorphy of the eigenvalues follows from Hk(O)

being a self adjoint type A holomorphic family with compact

resolvent. Suppose to the contrary that An(k) = An is
constant and define D = {kje €| (A - 7%(0)) ™! is bounded} .
(Here, Tk(o) = T(0) + 2k+J + k2) Since (An - Hk(O))-l =

1—~1

o - ™ (0)) "t - V(0) (A_ = T(0)) 1) "is not bounded for k, in

a neighborhood N 6f the real line, 1 must be an eigenvalue of
v(0) (A - Tk(O))_l in N€D and hence throughout D. But this
is impossible since by'choosing lim k3]sufficiently large

+ 3

and rek, so that inf| re k, N

norm of this operator may be made arbitrarily small. (The

> 0 jeI’ , the Hilbert-Schmidt
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Hilbert-Schmidt morm of this operator may be conveniently estimated
by an integral. See the appendix of [l1] for details.)

Lemma: H has no normalizable eigenfunctions.

Suppose ¢ satisfies
® K .3
(H=- 3¢ = [ (Hk) - ¢ dk=0

and let B, = {keB | H(k) has eigenvalue A}. By is closed and

the Lebesque measure u(BAT of BA in B is zero since BA is the
zero set of non-constant analytic functions. Thus ¢k =0

a.e. in the complement of B and since “(Bk) = 0, ¢k is zero a.e.

A
This last lemma shows that the spectrum of H is pure

continuous. The absolute cohtinuity 6f the spectrum of H follows

from the holomorphy of the eigenvalues An(k). This completes

the outline of proof for the main theorem.

We supplement this section with a theorem regarding

‘scattering theory. Let

H) = H + W(x) (2-8)

with W a real valued function of x satisfying the condition

of the following theorem.

Theorem 2. Let W be relatively compact with respect to - A

1
and assume |W|2(1 - A) 1 is Hilbert Schmidt. Then the wave

operators @, = s - lim eltHl e_ltHo exist and are complete, i.e.
- >+

the range of @, is the absolutely continuous subspace of H with

respect to Hy. The domain of wave operators is H .
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See [41. W ELl L2 suffices for the conditions of the

theorem to be satisfied. Other possible perturbations have

been considered in [5];

ITI. Energy Gap in Finite Crystals

Define the Schrodinger operator

m Ad m M,N
Hy(Nyam) = - X oo+ 2 vplxy = x5 = 2 valxy = y5) (3-1)
i i<j 1,3
: N
for the M.electrons. Here N vertices {yi} of an infinite

square lattice with lattice constant a are occupied with a

proton. Va and vy are continuously differentiable functions

on [0,«) (we identify v, (x) = v, (|x]|), ve(x) = v (|x])) such that

(i) VA(r), VR(r) > 0 and decrease monotonically in r,

(ii) VA(I), vR(r) < Cr_g—(S for some C, 6§ > 0.

. d A B
(iii) lim Ir 1n VR(I) = 0
r>o

(iv) There exist numbers r, > Eo > 0 such that

sup . v, (x) - vy (x + re) + vplx + (xr_ + ejle)| - vyle )< - q <0
X eR
where e is a unit vector.

Potentials satisfying these hypotheses with V, = Vg may

be constructed by the following lemma.

Lemma Let w(r) defined on [0,®) be a monotonically decreasing

function and let there be r, > r > 0 such that

a) w(r) = 0 iff r > Tor

W(O) ’

i

o Wik

b) w(rl)
c) w'(0) =

d) —a<w (r) <-b< 0 for r < r; and 2b > a.
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Then there ig a glw), ro,eo > 0 such that

lwix) = wix + ree) +wix + (rj + ede)| - v(e)) < - q(w
v(r) = VA(r) = vR(v) satisfies hypotheses (i) - (iv) provided
v(r) = w(r) + y(r), with w(r) satisfying the hypotheses of

the lemma and y(r) satisfies

a) 0 < y(x) < % g (w)

b) y(r) < cr 3798

c) lim d_ (In y(r)) =0
dr
T

The main result is the following theorem.
Theorem There are constants agr mO such that for all lattice
constants a > a,, masses m i'mo and positive integers N, M < N,
’one has inf spectrum HM(N,a,m) < inf essential spectrum
HM(N,a,m) - g for some g > O; o

Let us outline the strategy of the proof. -By'Hunziker’s
theorem, the infimum of the essential spectrum for

H (N,a,m) lies at inf {inf spec H,, (N,a,m)}. We make the
M M M M

inductive hypothesis that the infimum is actually A e.

M-1,N,>"

the ground state for the Hamiltonian with one less electron.
It is therefore natural to consider the tensor product of the

corresponding ground state eigenfunction wM—l N with a one
14

particle trial function ¢ and try to show that the energy
expectation value for the tensor product is bounded above

by A - g. This would establish the existence of discrete

M-1,N

spectrum for HM(N,a,m) below A - g and thus the existence

M-1,N
of a ground state wMN corresponding to XMN = inf spec HM(N,a;m).

The induction then proceeds to M < N. However, twoc modifications
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to this strategy are required.

In the case of the electrons obeying Fermi statistics,
the tensor product of wM—l,N and ¢ should be antisymmetrized.
In order to avoid difficulties arising from matrix elements
complicated by the antisymmetrization, we first multiply wM—l,N
by a symmetric factor N(§I'§2""'§M—l) so that the resulting
function vanishes whenever any of its variables lies in the
support of ¢ . N is constructive so that the norm of NwM—l,N
is nearly one.

The function is further modified by a unitary

YM-1, N

operator which shifts the variables of wM-l N 2 small amount
14

in a lattice site where the one particle density
(x) = fax, ... dx, .| v (XyXopeee,X )2[

Pz 2 M-1) YM-1,NZ7Z27 0 EM-]
is small. The reason for the shift can be seen by the
following heuristic argument: In the limit as a,m + « ,
we expect p(x) to become highly concentratéd about each proton
site with weight about 1/N. If M is approximately eQual to N,
the potential seen by an additional electron situated at x

near one of these positions (say y;) is

(M—l)V

- v (x -y M = 1) fup(x - >~<l)p,(>~<l)dxl:_-'-vA(>~< -y )+ T (x -

~1

which may be insufficient to bind the additional electron for
M I N> o {(i.e. the attraction is cancelled by the repulsion.)

We find however that if y and hence p are shifted slightly

M-1,N

in the site of the additional electron, it will bind with an

overall decrease in energy. (The site is selected according to
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9
the change in the kinetic, attractive and repulsive potential
caused by the shift being small.) This local shift approximates
the polarization of the M-l electrons due to the introduction
of an additional electron. This shifting gives an intuitive
idea of why hypothesis (iv) regarding the potentials is
included.

Finally we note that some local singular behavior of the
potentials can be accommodated. If Var Vg satisfy the
hypotheses of the theorem and the lattice spacing and electron
mass imply thatltheré ié a uniform gap, then there is also a

sing sing

2 ’ > + R
uniform gap ungig the perturbation Va > Va Va ,vR+vR Vi

GR3) -norms of VAsing}vrsing are sufficiently

"small. THe proof of this remark is effected by use of a

provided the L

Sobolev inequality estiméting the expectation value for a
contribution to the potential énergy in terms of the kinetic
energy expectation value. Somewhat curiously, we do not know

of a decomposition of v, = v_ = Yukawa potential into continuous

A R
and singular parts for which a uniform gap can be shown.
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