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Eigenfunction Expansions for Symmetric Systems

of First Order in the Half-Space Ri

by
Seiichiro WAKABAYASHI

Faculty of Science, Tokyo University of Education

1. Introduction

Figenfunction expansion theory by distorted plane waves was
initiated by Ikebe [1] and has been invesﬁigated by many authors,
for example, Shizuta [6], Shenk I [5], Mochizuki [3], Schulenberger
and Wilcox [4] and others. We are concerned with stationary
problems for symmetric hyperbolic systems with constant coeffi-
cients in the half-space Rf and give an expansion theorem by
improper eigenfunctions for such a problem. We note that this
problem cannot be treated as a perturbation of whole space prob-
lem. In fact, our result is a generalization of the sine and
cosine transformations in the L2 space on the positive half-line

2

which are eigenfunction expansions for -dz/dx in (0,*) with

Dirichlet or Neumann conditions at x=0.

Let R" denote the n-dimensional Euclidean space. Denote by

X the generic point of R" and write x'=(xl,--~,x Y. We shall

n-1
also denote by Ri the half-space {x=(x',xn)sRn; xn>0} and by t



the time variable. Let L be a first order symmetric hyperbolic

operator with constant coefficients:

n .
1 L =1TId/0t - I,_, A.3/3x,
(1) / J=1J/J’

where I is the identity matrix of order N and the Aj are NxN
constant Hermitian matrices. We consider the mixed initial and

boundary value problem in Ri for the operator L:
Lu(t,x) = £(t,x), >0, xeR,,

(2) Qu(0,x) = uO(X), xaRf,
Bu(t,x)lxn=o =0, t>0,

where u({t,x), £(t,x) and u.(x) are vector-valued functions whose

(0]

values lie in the N-dimensional complex space CN and B is an XN

constant matrix with rank %. Replacing u(t,x) and f(t,x) in (2)

by elktv(x) and —ielktg(x), respectively, we obtain the correspond-

ing stationary problem:

(& - XI)v(x) = g(x), =xeR,,

(3)
Bv(x)lx = = 0
n

where
-l.n
L A=3i "%, A 9/9x..
(h) 4= J / Jd

Our aim is to expand an arbitrary function in L2(R2) by means of
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generalized or improper eigenfunctions for the self-adjoint oper-
ator associated with this problem under some suitable conditions

for L{or A) and B.

Let p(A,n) be the characteristic polynomial associasted with

the operator L:

(5) p(A,n) = det (AI - A(n)),

where n denotes a generic point of the real dual space E~ of R

1 o= EXERE S
by the duality x n—xlnl xnnn and

6 Aln) = 2% A,.
(6) (n) = 55 nA,
The polynomials p(A,n) has a factorization

= 1 q
(7) P(A’n) = Ql(A,n) "'Qq(lsn) s

where the factors Qj(A,n) are distinet homogeneous polynomials in
(A,n), irreducible over the complex number field C. Since the
coefficient of AN in p(A,n) is 1, the factors are unique, apart
from their order, by requiring the coefficient of the highest

power of A in each Qj(k,n) be 1. Put

(8) Q(Aan) = Ql(l,n)"'Qq(K,n)-

Definition 1. The operator L is called uniformly propagative

if the roots Xj(n), 1sjsu, of Q(A,n)=0 satisfy the following con-



ditions where pu is the order of Q(A,n): (i) The roots Aj(n) are
all distinet for every n with |n|=l. (ii) A root function Aj(n)

vanishes for some real n#0 if and only if it vanishes identically

(see [T1).

Now we state precisely the assumptions that we impose on L
and B:

(L.1) The operator L is uniformly propagative.

[24]

(L..2) The operator A is elliﬁtic, i.e. p(0,n)#0 for any n in
with |n|=1. |

(L.3) For any real A#0 and any EeEn-l the real roots of Q(A,£,T)
=0 with respect to T are at most double and the number of the
real double roots for arbitrarily fixed (A,£)#(0,0) is at most
one.

(B.1) The boundary matrix B is minimally conservative, i.e.

Anc *Z=0 for any 1;88=ker BCCN and if 2 is a subspace of CN such

that £58 and Ana;-E=o for any te¥, B=& holds.

Remark 2. The conditions (L.l) and (L.2) imply that the
distinet characteristic roots Aj(n), 1sjsuy, of the matrix A(n)
‘have constant multiplicities and that u is even. Thus we put

u=2p and can label {Aj(n)} in decreasing order:
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A () > A (n) >eeex A () > 0> A (n) >eeex A (n),

(9) °

Aipp(n) = -2 (-n), 1sjsp, nfo.

p=J+l
Moreover we see that N is even. Thus we put N=2m. The condition

(B.1) implies that %£=m.

Remark 3. The differential operator A defines an unbounded

linear operator s in LQ(Rf) with domain

DA = {v(x)eC (R])s Bv(x)lxn:Q - o}.

A-is closable and we denote by A its closure. Then the condition

(B.1) implies that A is a self-adjoint operator in L2(RE).

2. EBigenfunctions

Let G(x,y3;A) be the Green function for (A - A), Im A#0, con-

structed in [2]. We define projections Pj(n), 1<j52p, by

1 -1 .
EFEJIAe*j(n)I=6 (AI-a(n))""ar, nfo,

(10) P.(n) =
J 0, n=0,
where § is chosen sufficiently small such that the set {2; Il-

Aj(n)|<6} contains no roots of Q(A,m)=0 except lj(n).

Definition 4. Let xeRf, neE™ and Im A#0. Define

(11) ¥, (x,n30) = ?yts(x,y;x)](n),(xj(m-x)Pj(n),



(12) li’?(x,n) = Yj(x,n;kj(n)iio), 1<js2p,
and
Ak () _ _
(13) q’j+2\)p'(xan5>\) = m ‘{’j (x,n3x) for nED\) XE,
+ . .
(1k) ¥j+2vp(x,n) = W5+2vp(x,n;kv(£)i10), 1sj<20,

1svss for almost every neDvxE,

where the set {kv(E)} } is the totality of non-vanishing

velj; EeDJ.
zeros of the Lopatinski detexminant for the system {A,B} and
ki(g)#kj(g) for geDinDj and i#j (see [8]). Here we define

G(x,y;A)=0 for XeR_r: and ng_I:.

+ +
Wg(x,n), ‘{’3 vp(x’n) are (improper) eigenfunctions for the

+2

operator A, i.e.

+ = x
Ax‘yj(xsn) = }\j(n)‘yj(x’n)’

(15) .
ng(x,n)lx -0 = 0> 1sis2o,
n
A Y (x,n) =k (E)¥D , (x,n), lsje2
X J+2vp 0= K 2 j+2vp x,ml,  1sJ<2p, lgvss,
(16) + .
B‘Pj+2vp(x’n)lx = = 0s for almost every ngDvxE.

3. Expansion theorem

Theorem 5. Assume that the conditions (L.1) - (L.3) and

(B.1) are satisfied and that stg(Ri).



(i) The expansion formﬁla

2
(17) Pf(x) = El o ¥ Gen)E; (n)an
s 2p +
*I o Zj=l vax_ J+2vp(x n)fj+2vp (n)dn

holds, where

(18) F) =5 v, frx)ax, 1sis2o,
J e I
+
+ * .
(19) j+2\,p(n) = Rn Wj+2vp(x,n) £(x)dx, 1£js2p, 1Svs<s.
o+

Here the above integrals are taken in the sense of limit in the
mean and P is the orthogonal projection onto R(A)a=l\I(A)'L

(ii) feD(A) if and only if A ( )f (n)aP (n)L ("), x (E)fJ+2vp( n)
er(n)Lz(DvXE), 1<582p, l$v$s. Then

_ w2 + e
(20) (me) (x) = 230, fEn A (¥ (xon) £5(n)dn
s 2p
I B vaxH k (8)Y, +2Vp(x n)fJ+2vp(n)dn,
(21) oAf>3*<n> = xj(n)%§<n), 123520,
(22) omf)a;gvp(n> =k (E)fj+2vp(n), 15j%2p, 1svss.

Remark 6. (i) The condition (L.2) can be removable. (ii)
We can prove the principles of limiting amplitude and limiting

absorption for the operator A by Theorem 5 and representations of



85

eigenfunctions (see [9]).

. Outline of proof

The self-adjoint operator A admits.a uniquely determined

spectral resolution:

(<]

(23) & =/ AE(L),

where {E(1)} denotes the right—continuous spectral family

—00<) <o
of &. Then it follows from the'Stieltjes inversidn formula that

©, 1
for feCO(R+) and a<b

(24) ({(E(p)+E(p-0))/2 —'(E(é)+E(afo))/2}f,f)

= Lim , 7Eo0 [ anfl dk =%, (nsxtie)|?,
=g (2 (n)-k)"+e J

where ( , ) denotes the inner product of L2(R2)‘and

. wj(x,n;x)*f(x)dx, Tm A#0, 15js2p.

R,

(25) %j(n;A) =/

In order to prove the expansion theorem it suffices to show that

we can interchange the order of lim and S 0 dn in (24). On

-

e¥0

the other hand we have
(26)  ¥,(xmd) = (203X (n)
1, \-1/27 .
- $(em) %,[G(x,y ,+0,K)](£)AnPj(n).

Thus, the part most involved of our study is to analyse the behav-~
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ior around the singular points of the second term on the right

hand side of (26) where the Lopatinski determinant vanishes. The

detailed proof and further results are given in [8].
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