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Positively curved Kaehler submanifolds

of a complex projective space

Koichi Ogiue

(Tokyo Metropolitan Univ.)

For a Kaehler manifold M we use the following notation:
n: the dimension of M
g: the Kaehler metric of M
K: the sectional curvature of M
H: the holomorphic sectional curvature of M '
S: the Ricci tensor of N
P: the scalar curvature of M.

Moreover we define n scalars P, <=+, P by

det(g--- + 'tR.-.-)
1] 1] - k
» =1+ 3P,

where gif and Riﬁ denoté the local components of g and S,
respectively. It is easily seen that f’é 2 Pi. :

Let Pm(C) denote an m-dimensional complex projective
space with the Fubini-Study metrie of constant holomorphic sec-

tional curvature 1. By a Kaehler submanifold we mean a

complex submanifold with the induced Kaehler structure.
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1. Problems

There are a lot of interesting problems in the theory of
Kaehler submanifolds, among which we confine our attention to
the following: Let M be an n-dimensional compact Kaehler
submanifold immersed in Pn+p(c)'

(I) If H>%, is M totally geodesic?

(II) If K>0 and p<PB*)  or ir k>4 and nye2,
is M totally geodesic?

(III) If every Ricci curvature is > %, is M totally
geodesic?

(Iv) If Pk>(ﬁ)_(%)k,: for some k, is M totally geodesic?

2. Results in this direction

Using the vanishing theorem of Kodaira, Kobayashi and Ochai
proved an outstanding result, as a corollary to which we first

quote the following.

Theorem 1 ([5)). Let M be an n-dimensional compact

Kaehler submanifold imbedded in Pn+p(C) as a complete inter-
- section. If H>3% or if K >0 and n 22, then M is

totally geodesic.

Theorem 1 can be considered as a partial solution to
Problems (I) and (II).
For a general Kaehler submanifold, we have the following

result as a partial solution to Problem (I).

-2~
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- Theorem 2 ([7}). Let M Dbe an n-dimensional complete

. . . . i o n+2
Kaehler submanifold immersed iﬂ.an+p(C)' If H>1 - T(n+2p)’

then M 1ig totally geodesic.

Theorem 2 is best possible in the case p = 1.
The lower bound for H in Theorem 2 can be improved by
impoéing some additional assumptions, for example, the following

can also be considered as a partial solution to (I).

Theorem 3 ({4, 7]). Let M be an n-dimensional complete

Kaehler submanifold immersed in Pn+P(C). If H> 3, then

M 1is totally geodesic provided that Pk is constant for some

k< n.

The following is a result of the same type as Theorem 3 and

is a partial solution to (II).

Theorem 4 (U4, 7). Let M be an n-dimensional complete

Kaehler submanifold immersed in Pn+p(C). If K> 0 and

p<nr21+1 or if K>% and n 22, then M is totally

geodesic provided that [, is constant for some k < n.

Theorem 3 and Theorem 4 can be proved by combining the

following three results.

Proposition 1 ([27). Let M be a compact Kaehler manifold.

If K>0 or 12 H> %, then the second Betti number of M is 1.
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Proposition 2 (‘[-3, LL]) Let M be a n-dimensional compact

Kaehler manifold (n22). If Pk is constant ( + 0 when

k ¥ 1) for some k< n and if the second Betti number of M

is 1, then M 1is Einstein.

Proposition 3 ([1]). Let M be an n-dimensional compact
f

Einstein Kaehler manifold. K>0 or 12H >3, then

M =P (C).
As a partial solution to Problem (II), we have the following.

Theorem 5 ({9]):. Let M be an n-dimensional complete

5 ; : ntd)p + 1
Kaehler submanifold immersed in Pn+p(C)' If K> n(ZpFi ,

then M 1is fotally geodesic.

For a hypersurface we have a simpler result.

Theorem 6 ([?]). Let M Dbe a complete Kaehler hypersurface

immersed (resp. imbedded) in P_,,(C). If K>0 and nxz 4

(resp. n2 2), then M is totally geodesic.

The following may also be considered as a partial solution

to Problems (I) and (II).

Theorem 7 (L9]). Let M be an n-dimensional complete

Kaehler submanifold immersed in Pn-!-p(c‘)' If K> %, H>3%

and p # 342;2_ s n2L3 > then M 1is totally geodesic.
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As for Problem (III) we have a complete solution:

Theorem 8 ([7]). Let M De an n-dimensional complete

Kaehler submaniféld immersed in Pn+p(c)’ If s )»% g, then

M ;§>totally,geodesic.

As an immediate consequence of Theorem 8 we have the
following result which gives a best possible solution to (I)

in the case of complex curves.

Corollary 9 ([7]). Let be a complete complex curve

M-——
immersed in- P1+p(C). If K>3, then M is totally geodesic.

The special case of this result where p =1 ‘and M is
non-singular (or imbedded) was proved by Nomizu and Smyth (Lel).
The theorem of Gauss-Bonnet gives a relation between\

curvature (differential geometric invariant) and the Euler
number (topological invariant). - The following result is of
Gauss-Bonnet type in the sense that it provides a relation
‘between differential geometric invariant and more primitive

invariant.

Theorem 10 ([7, 87). Let M be an n-dimensional compact

Kaehler submanifold imbedded in Pn+p(C). If M is a complete

intersection of p non-singular hypersurfaces of degrees aqr "ty

in P, (C), then
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This result can be proved by usingbthe propertiés of the
first Chern class and some elementary facts in harmonic integral
theory.

The following result is an immediate consequence of Theorem 10,

which provides a partial solution to (IV).

Corollary 11 ([7, 8]). Let M be an n-dimensional compact

——

as a complete inter-

Kaehler submanifold imbedded in Pn+p(c)

section. If Fazj>(ﬁ)(%)k for some k, then M is totally
geodesic. o

Theorem 10 implies that the integral of the scalar curvature
depends only on (the sum and the product of) the degrees.
But the scalar curvature itself depends strongly on the equations

defining M. In fact, we have the following.

Theorem 12 ([7]). Let M be a compact Kaehler hypersurface

of P 44(C) defined by a homogeneous egugtion F(zgy so0 zn+1)"

= 0, Then

P = n(n+1) - (Zz.z.){ trAk |, Ae)(am (tma)(taza)}
1 1 ’

oo (*ma)? (Ym0
2
where OuL= ( j:'-lF-—) and A = ( —:Q—E———).
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. _ 2 2
Example Let M = %(zo, rer Zn+1)€'Pn+1(C)‘Zo oo+ oz
+ azi+1 = O}. Then Theorem 10 and Theorem 12 imply
2 2 n
n“ +1-a ng n(n+l) - = o (az1)
n(n+1;—g< i<n2+1—a2 (0L ag 1)
a = f> =

n
S Pxt = n? §I*1 = n® ZL%%EL_ (independent of a).
i

Corollary 11 states that Problem (IV) is affirmative for
some special class of Kaehler submanifolds. The following

result due to Tanno gives a partial solution to (IV) in general

case.

Theorem 13 ([10]). Let M be an n-dimensional compact

Kaehler submanifold immersed in P . (c). | If P > n(n+1)

P
r_}_-%Z_ , then M is totally geodesic.
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