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TAIL PROBABILITIES OF SOME CONTINUOUS FUNCTIONALS

OF GAUSSIAN PROCESSES

Hiroshi Oodaira

Yokohama National University

1. Let X = {X(t), O < t £ 1} be a path continqous Gaussian process
with mean zero, and let T be a real continuous functional on C[0,1l] such
that T(cx) = cPT(x) with p > O for any positive constant c. In this note
the following asymptotic estimate for the tail probabilities of T(X) is
obtained:

lin (1/6%/®)+log P{ T(X) > o } = -(1/2)b°,
Q>
where b2 is a constant determined as the solution of certain extremal
problem. For example, it is shown that if X is Brownian motion, then
lim (1/6%/P).10g B{ fé[x(t)lpdt >} = ~(1/2) (c(p)) 2P,
ol

where p 2 1 and

clp) = 2(p+2)(p/z)_l/(fé(l—tp)"l/zdt)Ppp/z,

and also, if X is Brownian bridge, then the same formula holds with c(p)
P
replaced by 2 “c(p).

In his thesis [3] and also in [4], N. A. Marlow obtained a similar
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asymptotic formula for tail probabilities of uniformly H8lder continuous,
asymptotically homogeneous functionals F of path continuous Gaussian proc-
esses. His method of proof is to first estimate log P{ F(X) > a } in the
finite~-dimensional case by a Laplace asymptotic formula, and then to pass
to the limit to obtain the function space version. Note also that H. P.
McKean [5] obtained a similar asymptotic estimate for tail probabilities
of multiple Wiener integrals.

Our method is different from Marlow's and is based on the following
Fredlin-Wentzell type estimates for Gaussian measures given in [7] and [2].

Let C = C[0,1] be the space of all continuous functions on [0,1] with the

3

supremum noxrm ") and let A be the o-field of Borel subsets of C.

Let u be a Gaussian measure on (C, A) with mean zero and covariance func-
tion R(s,t), i.e., fcx(t)u(dx) =0, for 0 £ t £ 1, and R(s,t) =
fcx(s)x(t)u(dx) ,for 0 £ s, t £1, where xe€C. Let H = H(R) be the repro-

ducing kernel Hilbert space (RKHS) with reproducing kernel (z.k.) R, whose

norm is denoted by ||-IIH. Note that HCC, since R is continuous.

Theorem 1. Let ¢ € H. Then, for any 8§, h > 0, there is a number ao =

% (8, h, [[¢|[H) such that
pl x| [l/@) = o], <8} zul x| [|x - a|| <81
2 expl-(a°/2) (| o] |5 + m)]

for all o 2 ao.

Theorem 2. Let K_ ={¢en| ll¢||H < r } and let d(x, K ) be the

distance from x € C to K _ in the sup norm [|-1]_,. Then, for any §, h > 0,



there is a number ay = ao(ﬁ, h, r) such that
2 2
w{ x | dx/qa, K)>8 1} s expl-(a”/2) (" - )]

for all a 2 ao.

For the proofs see [7] or [2]. From Theorems 1l :and 2 we obtain the

following

Theorem 3. Let T be a real continuous functional on C such that T(cx) =
cpT(x) with p > 0 for any positive constant c¢ and T(¢) > O for some ¢ € H.

Then

lim (1/0%P)+log ul x | T(x) > a } = -(1/2)b,
Qr

where b> = inf { H"’”; | T(¢) > 1} = sup { r? | sup{T(¢) | ¢ex <11l

Proof. Let D= { x | T(x) > 1 }. D is open and its closure D = {-x |
T(x) 21 }. For any ¢ € HND, there is a § > O such that ||x - ¢[lw <8
implies x € D. Hence, using Theorem 1, we obtain

x| T(x) >a} = pul x| T(x/al/p) >11}

2l x | !](x/al/p

) - ¢l <8}
> expl-(a?P/2) ([ 4|12 + w1

for any h > 0, if o is sufficiently large. Thus, for any ¢ € HND,

lim inf (l/u2/p)'log x| Tx) >al2 -(1/2)II¢II§,
(Ve
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and hence,

lim inf (1/a2/P)-log x| T(x) > o}

u—)@

2 -(1/2)+inf { []o]]3 | T®) > 11

Since Kr is compact in C (see, e.g. [6]) and T is continuous, there is
a number r > 0 such that sup{‘I‘(d))l 9 & Kr } < 1, and for any such a number
r, there is a § > 0 such that d(Kr' I—)-) > §, where d(Kr’ 5) is the distance

g 1
between Kr and D. If T(x) > a, then x/o /pe D, and by Theorem 2,

ul x | T(x) >a}sh{x|d(x/otl/P, K ) >8 }

2/p

< expl-(@*P/2) (% - n)1

for any h > 0, if o is sufficiently large. Therefore,

lim sup (l/ozz/p)'log p{ x| ™) >0} < -(l/2)r2.

Q>
and hence
lim sup (1/oc2/p)-log w{ x | T(x) > o}

Qoo

< -(1/2) *supf r2 | sup{T($)] ¢6Kr} > 1 }.

It is easy to see that inf{ l‘¢l|; | T(¢) > 1 } = inf{ |l¢||§ | ®(o)
> 1} (in fact, = inf{ ||¢||§ | T(¢) =1 1, and if % < inf{ |l¢l|§ |
T(¢) 2 1 }, then sup{ T(¢)] pek, } < 1, and so sup{ r? | sup{T(¢) | d)éKr}

<1} = inf{ HMIS | T(¢) > 1 }. This completes the proof.

Remark. Note that sup{T(¢) | q;eKb} = 1. Since sup{T(¢)[ ¢eKb} =

bp°sup{T(d>)| q>eK1}, we have b2 = ( sup{T(¢)| qbeKl} )_Z/P.
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2. In what follows we consider several examples for which the values

2 . . . : :
of b can be explicitely given by evaluating sup{T(¢)| ¢65K1 1.

(i) Let X be a path continuous Gaussian process with mean zero and
covariance function R(s,t). Then
. ‘l 2 .
lim (1/a) <log P{ fOX (t)dt > a } = —l/(2kl),
Qo

where A, is the largest eigenvalue of the covariance operator R with kernel

1
2
R(s,t) on L [0,1].

This is a known result, and so we just indicate briefly how it can be
derived from Theorem 3. In this case T(x) = féXZ(t)dt = [Ix]lg and p = 2.
Let'{ki} and {wi} be the eigenvalues and the corresponding normalized
eigenfunctions of R. Then {¢i = Xi/zwi} is a complete orthonormal system
in H(R). It can be shown that ||¢||§ < Al[l¢l[; for any ¢ ¢H(R). Hence

sup{T(¢) | ¢e&Kl} < A Since |l¢l||§ = A,, we have sup{T(¢) | ¢E&Kl} = A

1 1’

and hence the result.

(ii) Let y be the Wiener measure and let T(x) = fé]x(t)lpdt, p 2 1.
The RKHS H(R) associated with the Wiener measure is the space of all
aEsolutely continuous funct?oné ¢ on [0,1] such that ¢(0) = 0 and d¢/dt &
L2[O,l], and (¢, w)H = fé(d¢/dt)(d¢/dt)dt, where (-,-)H denotes the inner
product of H(R). V. Strassen ([8], p.220) proved that sup{T(¢)! ¢e:Kl} =

c(p), where

c(p) = 2(p+2) (p/z)_1/(fé(l—tp)"l/zdt)PpP/z.

We thus obtain the result for Brownian motion stated at the beginning of

1/2

- 2 ]
this note. In particular, C(1) = 3 and c(2) = 4/ . The case p = 1

nas been previously obtained by Marlow [3] by a different method, and the
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case p = 2 is of course a particular case of (i). If p in an integer,

then the same formula holds for T(x) = fé(x(t))?dt.
(iii) Let p be the Wiener measure and let
; 1 2
T(x) = fo|x() [Pat/r|x (o) |at.

Then sup{T(¢)‘ ¢G§K1} = 2q, where 0 < g < 1 is the largest solution of

/2 / /

(1~ ?sin (-0 %/q) + cos((1-9)%/q) = 0

(see [8], p.222). Hence, if X is Brownian motion, then

1lim (1/0L2)-log P{ fé[X(t) |2dt/fé:f'x(t) lat > o } = —l/(8q)2.
oo _

(iv) Let X be Brownian bridge. We shall show that

lim (1/a?/P)-10g B{ [élX(t)l%t >a}=-20ce) P, pai1,

vwhere c(p) is the same as in (ii).

The covariance function of Brownian bridge is

{ s(l-t), for s < t,

R(s,t) =
t(l-s), for s = t,
1
= IOQ(uIs)Q(uIt)dul
where
1-t, for u < t,
Qu,t) = {

-t , for u>t.

Hence the RKHS H(R) with r.k. R is isometrically isomorphic to the closed
2 - s
subspace M of L[0,1], spanned by {Q(u,t), 0 £ t < 1}, and any function ¢

in H(R) has a representation ¢(t) = fém(u)Q(u,t)du with m e M. Note that
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ML1l, i.e., _fém(u)du = 0 for all meM, since féQ(u,t)du‘ = 0 for all t &
[0,1] and if fén(u)du = 0 and fén(u)Q(u,t)du = 0 for all t €[0,1], then

n = 0. Hence ¢(t) = fém(u)Q(u,t)du = fgm(u)du, which shows that ¢ is
absolutely continuous. Therefore, H(R) is the space of all absolutely
continuous functions ¢ on [0,1] such that ¢(0) = ¢(1) = 0 and ¢' = d¢/dt &
1?10,11, and (6,9), = fé¢'¢'dt-

As in Strassen's proof [8] for Brownian motion case, wé shall evaluate
sup{T(¢) | ¢e,Kl} = supf fé!¢(t)lpdt | $(0) = ¢(1) = 0 and fé¢'2dt <11} by
classical methods of the calculus of variations. Since Kl is compact and
T is continuous, there is a maximizing point ¢ with Hd)l l; = fgtb_‘zdt = 1.

We may assume ¢ 2 0, and ¢ satisfies the equation

f(])'p¢p_llpdt = Zx-féci)'w'dt, for any P €H(R),

where A > 0 is a Lagrange multiplier. Integrating by parts the left-hand

side and noting that $'41l 1, we obtain
fé{fip¢P_l(s)ds - fé[f§p¢9'l(u)dulds}w'(t)dt = 2A°Ié¢'¢'dt
for all Y'& M. Therefore,

(1) fip¢p_l(s)ds - fé[fip¢p-l(u)du]ds = 227 (t); for 0 < t < 1.

Since ¢ 2 0 and A > 0, (1) shows that ¢'(0) =2 0, ¢'(1) < O and ¢' is

differentiable and monotone decreasing. Hence there is a point t0 such

that d)'(to) = 0 and ¢'(t) 2 0 or £ 0 according as 0 £ t < t0 or t0 ft<s<1.

Differentiating (1) ,multiplying with ¢' and integrating again, we have

) ¢Fe) + A6t 3 (e = 6P + Aer (D) = 292 ().



Hence |¢'(1)| > 0 and

2
/ for 0 £ t < to,

for to's t < 1.

@t - amefent
(L) = {/

62 - ameent/?

Therefore, noting that ¢(o) = ¢(1) = 0, we get, for 0 < t < to,

1/2

@ e=2%wMa - ot e

_ v 2 1/p _
MLy @y | PRI E/00TANTE g py L2,

and, for t0 £ ts<1,

/P

1 - v 24y,

2,01
@ € - 1= Mgy F/RTL (/00T )

Put t = to in (3) and (4). Then to =1 - tO, and so to = 1/2. Put t = 1/2

in (2) and (3). Then ¢P(1/2) = 2¢'2(1) and

) 172 = AMPlpr | BRIt - BT 2y,

1

0
o 1,2

Integrating {2} and noting fo¢ dt = 1, we have

(6) fé¢p(t)dt = A3 (D) - 1)

Using (3) and (4), we obtain

fé/2¢p(t)dt - Al+)l/p)|¢'(l)ll+(2/P)-févp(l _ Vp)-l/2dv
- L 4P
= f1/2¢ (t)at.

Hence

7 rgfmae = B ) PP &) 2av

= atee2) IR g ) [P - B T R,



Eliminating A and |¢'(1)| from (5), (6) and (7), we obtain

(p/2)-1

P mae = 2P (pe2) /g = )7 2a0) P2 - 2o (p).

2/p

Thus b> = 4(c(p)) “'%.

Remark. If p is an integer, T(x) = Ié]x(t)lpdt can be replaced by T(x) =

féxp(t)dt. The above result sup{T(¢)[ ¢6.Kl} = 2-Pc(p) can be used to

obtain an iterated logarithm result for the functional T of empirical

distributions (cf. H. Finkelstein [1]). Finkelstein discusses only the

case p = 2, which can be obtained as a particular case of (i).
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