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On Isometric Structures of 3-Manifolds -

By

Akio Kawauchi

(Department of Mathematics, Osaka City University)
0. Introduction

As is well-known, J.W.Milnort12] defined an isometric form
of the knot exterior E(k) of a classical tame knot k < g’
associated with an element of Hl(E(k);Z) that is specified by the
orientations of the knot k and the containing %*-sphere SB. The
3

isometric form, referred to as the quadratic form of the knot kg 37,

is necessarily non-singular and it was applied for the Fox-Milnor

knot cobordism group[3]. The author defined analogously non-singular
‘isometric forms for closed 3-manifolds having the integral homology
group of an orientable handle S%st and this isometric form was
applied‘for the %Lcobordism group gﬁjslxs2) of the homology
orientable handles.(See [8].)

The main purpose of this note is to define isometric forms for
arbitrary, compact,connected and oriented 3-manifolds with non-zero
first Betti numbers and to deduce elementary propverties of the forms.

In order %o definé the isometric form, we will need a version

of the Blanchfield duality on the infinite cyclic covers of manifolds.

(¢f. B.C.Blanchfield[1].) Our isometric form will be, in many cases,
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singular and, as in the link theory(ef. K.iurasugill3], ¥.Hosokawal4],)

, we will define the rlurasugi signature, the ( one variable)Alexander

volvnomial, the Hosokawa polynomial and the nullity.(However, it

should be noted that the concepts of the lurasugi signature and the
nullity of our form are strictly distinct from the original concevts
of K.Murasugill3].) The isometric forms and hence these invariants
will be seen to be closely related to the various (restricted)
cobordism problems of ZF-manifolds,

The note will contain typical three applications. The first
will concern a polynomial condition for a finitely presented group

with the first Betti number one to be a 3-manifold group. For example

, we shall show that the finitelv presented crouv G(ﬁ q)z( a, b:
R !

2% = v% ) ic a 3-manifold group if and only if pq = 0 or

ol = |gl. This answers a question of William Jaco[5,Question 13],.

N

he second will concern a codimension one piecewise-linear embedding

3

of a 3-manifold into a 4-manifold. For exam?le, We shall show that,

N

for an orientable torus bundle M over bl, the bundle projection

D: M o~ Sl = Sl><* CZS%ng is not homotopic to any piecewise-linear

embedding except for two possible cases. The third will concern a

codimension two (possibly non-locally flat) piecewise-linear
embedding of the disjoint union of 2-spheres in a 4-manifold. For
examvle, we shall present a generalized version of an example shown

by Y.Matsumoto[1ll] by using an invariant of R.A.Robertello[15]. That

is, we shall show that there exist simply connected viecewise-linear

4-manifolds W  such that anv basis of Hz(%;z) can not be

represented bv disjoint, piecewise-linearly embedded Z2-spheres, though
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In Section one we

(II). In Section two we

and their related invariants, the iurasugi signature,
polynomial, the Hosokawa polynomizl and the nullity. cection three
will study the relationship between the invariants of our form and
the cobordisms of 3-manifolds. Finzal Section is the applica*tions on
the three topics.

Throughout the note, spaces will be considered from = niecewise-

linear vpoint of view.

1. Duality Theorems

<
P

Let F be a field and <t> be the infinite cyclic
multicative ) group generated by +t. By Flt] we denote the ITOUD
algebra of <t> over F. It is easy to see that (%] dis a vrincinal
ideal domain.

Consider a compact, connected, piecewise-linear n-manifold i

with an evimorphism X:TTT(Mn) — <t> and let N™ be the infinite
cyclic cover of M associated with Y. It is easily checked
that the homology F-modules H*(ﬁn;F) and H*(ﬁf,éﬁn;f} form
finitely generated F[lt]-modules, since the original manifold A e

. . N : . - X IR
compact and F[t] is a principal ideal domain. We denote by @ (M e
N . - \ O
and g*(M , M3 F), resvectively, the F[t]-ranks of the finitely

Entl 1 - - ’{V,n \ - ’,"1’1 B '}“‘,’I’l T o
generated homology F|lt/-modules H, (M ;F) and H, (11,3 ;F),referred

4
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N <
to as the PF[t]-Betti numbers of M* and (M%,91%). By T,(%%F)

and T, (M AL F), respectively, we d the F[t]-torsi %
T M7, a5 F), respectively, we denote the orsion parts

Mg

of H,( and H*Cﬁn,ﬁﬁn;F), referred to as the homology F[t]-

torsion modules of 1 ana (T,aM7).

The cohomology F-modules H*(N';F) and B*(M2,9M%;F) form
Flt]-modules that are not always finitely generated F[t]-modules.
Define the finitely generated F[lt]-torsion modules T*(%p;F) and -
(M2 M F) by the identities:

(M) = HomF[T*(ﬂm;F),F]
* (M0, oM F) = Homg [ T, (M, 3™ 7)), F].
Further, we define B, = H,/T, and B¥ = HomF[B*,F]. There are split

short exact sequences of F[lt]-modules:

* ‘H* By > 0

0 -—= B¥ > H* T* 0.

(Note that these qeouences are canonical, but not canonically svlit. )

1.1.Duality Theorems. Suppose %F‘ is orientable over F.

Then,
(I) For all i, Q.(%?~F) = B .(m LMY F)
(11) T (M %Nn F)~TF, and for a generator /a/ of

(un QNH,F) and all i, the»cup product with/k 'ﬂ~H I N7y —>
H | l\vn Mn,F) induces an isomorvhism

n-i-
f&ﬁ:Tl(ﬁn;F)ct e l(n OV )

-4 -




89

Duality Theorems (I) and (II) have been essentially known by
R,C.Blanchfield[l]. However, the formulation of (II) is near to
J.W.Milnor's[12] rather than the original R.C.Blanchfield's.

1.2. Remark. In Duality Theorems (I) and (II), the assumption
of the triangulatidn of M can be actually removed by using a
method analogous to that of the author's paver(9].

1.3.Remark. In Duality Theorem (II), t acts on T QVn-E‘

n—l(
~F as the identity map or the (~-1)-multiple map according as the

P . 5 n . . .
original manifold M is orientable or non-orientable over F.

1.4, Proof of Duality Theorems. Take a triangulation of M

and choose a basis for the free F[t]-module Cifﬁn;F)A with one
generator for each i-cell in M". Then it is easily done to set up
the identification as F[t]-modules of the finife cochain complex
Homc[C*(WP;F),FJ with the cochain complex HomF[tJ[C*(En;F),F[tJJ.
Hence we have an isomorphism Hé(ﬁn;F)ﬁv Hgﬁfﬁn;F[t]) as Flt]-
médules, where H* { ;Flt]) denotes the cohomology of the cochain
complex HOmF[t]L“*(K sF),Flt]]. Using the vrincival ideal domain Z[t]
, from the universal coefficient theorem, we obtéin a short exact
sequence

O>Extyr ¢ LH; (M 7)), Ft] |—m% £ ;P ])—Homy ¢ (LH, (i (M 5), 7] J=0
for all i. In particular, we have

ei(ﬁn;F) = rankF[tJHomF[tJ[Hi(ﬁn;F),F[tj]

LA
rankF[tJd§f§Mn;F[tJ)

iMn, L
= rank1[tJHc(M i F)

and



S T '"\.f?n, ” oo ™ E
leFTi-lkh iF) = almymxtfi 5
i M \
= dlM1LOrFLtJ(LF[tJ<M sFLE D))
Ll L
= ilm\¢orﬁ|t1(HC(M‘,r)).

on the other hand, we obtain the following commutative (up to sign)

square of isomorphisms
- ,T“"n .

. )
1 -,an 0 i ¥I - ~Y1 T, rn ™
B UTE) = Hy (10,3005 F)
-1
= [t 7T | =
: ~n ~n Y
HY (W75 F) —ﬂ%%ei H (7,305 F)

o~ -
, where [M"] 1is a generator of the nth infinite homology F-module

(M ™ F)=~ F. Therefore we have

B, ()

1l

rankF[+JHl(ﬁn;F)

}L iy (13T 2)

@ n ]a‘n *1
. fs .

This proves Duality Theorem (I

I

s . . " . . Eadel .
Next, choose compact. submanifolds Mi, —0mk1‘&0b in WM with
.t w ; PN - /el
b, M, a compact submanifold and such that M b‘m M. and
i i+l : -1
t(M;) = My, . (cf. J.@.Milnor{12], A.Kawauchil7],[9].) By [7,Theorem

1.1], we can assume that both N =M UM ,U... end Ny=i_ Ui _,U...

. . i . N7 7 , \
are connected for all integers p and gq. Let it CL(ﬁn,Nb) and

vé ’f\rfﬂd("n Né) be the inclusions. By considering the Mayer-Vietoris

~,
sequence of the triple (Mn;ND,Né) and by taking the direct limit

0, q ==+, we obtain the following exact secuence

” P . '*
— Hé( 7)—> lin_{ H TP, ﬁo;y‘} @y B T"“)} }
i on 5 i+1
g (8 #) —5-91{; (WHF) — tv v,

How we need the following lemma:
-6 -
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1.5.Lemma. Im §j*} +§jé*}c3i(fw§“;F) for all 1.

The proof will be given later,

Lemma 1.5 +tells us that the split exact sequence
0 = BT p) —uH (7)) — (™ F) — ©
also induces a split exact qequence

0->B (IVy,E)/IméJ*}—fh'*}-—éH M )/Im}g*]&g]'*}—? (7 F)= 0.

?\ﬂn l+4_(

Since the homomorphism §:H (MW7) — H M3 F)  induces a
nonomorphien gt (5 0) /Ingixg +430%p = BN E) e

l*l(rvfn,m,

dlmﬂT (u ;F) = dim TorF[tJLH from the above split exact

. . in .
‘sequence, we obtain a canonical isomorphism §":T (ﬂ ) —

l+l (i sF)]. Combined with the isomorphism {I[M"]:

TorFLt][ﬂ

TorF[tJ[Hé+l(Mn;F)J — Tn_i_lfﬁn,§ﬁn;F), we obtain the composite

isomorphism ([11"]e {;'!:Ti(’ﬁn-F) -1 l(ﬁn,g’ﬁn;z‘) for all 1.

For a unit 1& HO(ﬁn'F)zT{ F), we let }L Sf(l H[lnj é;

(WP}ﬁ?F}F). 1t is 1mmed1ate to see that the isomorphism

(ﬂ@@]og":T.(M ;F)tz,Tn_i_l(M ,3M%: 7)) is induced from thekcan product
i

wit@}t fy&ﬂfK?P}F) = H l(Mn;EMn;F). This proves Duality Theoren
(11). L

, . . 5
1.6. Proof of Lemma 1.5. Let Ti(p) and i (q) be the

images of the homomorphisms jp*:Ti(ﬁPjF) — H (oM , 1 D,r) and

iy

3 s 4 ) '
jé*:Ti(ﬁ ;F) = Hi(ﬁn,Né;F). For p'<p and q' < q let ,Ag

iy

~n . ~ \ ' Ay L
B, (I ,Np;]ﬁ) ——:»Hi(ivln,Np,;}f) and )\'g‘ :H, (0 ,N', F) - H, (M ’N{;'”)

be the canonical homomorphisms. Since tTi(M ;F) = TiCm@,F), we
obtai =T, 1 178! = T! : s
ain t° Tl(D) T1(p+s) and t,‘ i(q) i(q+s) for all s.

-7 -
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Using that 7T. and 7! are finite-dimensional over
& i(0) i(0)
N : -8 - 1 =S m —_
F, there exists s >0 such that )(O (Ti(o))_O and NG (_L:{‘(O))—O
[7]),[12].). Naturality , then, implies that for all v and q
-X*)+s (p+s )) = 0 and )\Q‘*S l'i(o+s )=0. Let x* & Im {1;(. + %w(‘l*}.
and write x* i‘] Hx*‘- + {]'*?«{x'*} X*) + jé*(x(’l*) For all
Ve Ti(b’l;F), we have
x*(y) = x*(j (V) + x'*(:j' (y))
-s
X% S[)\D S(JD*(y) ] + xg [/\'q Gga(y))]

= 0O,

i

Hence x* & BT (M*;F). This completes the proof.

1.7. Remark. Consider a non-trivial homomorphism )“:Trl(mn)—><~t>

with order(<t>/Im¥ ] = d. The infinite cyclic cover M°* of M*

. 3 . o v Ly 4
associated with v has d components I\’IU, rul,... Md-l such that
£ (77 . l = ““'], i= 1, 2,..., d=1, and t(‘?f ) = ho. Each component

~ oo s . o) . . n

Mj is the infinite cyclic cover of X associated with vk TT_-L(M )=
. - n . . \

Im ) . For simplicity, we assume M is orientable over F. For

. . . ~n ~n
each j, Duality Theorems (I) and (II) imply @i(Mj;F)= g}n ,,(Mj
. I N~%

(7 ,alu ;F), where we choose

,c")le‘v\"l?;F) and /‘3 ;r)"- T

n-i-1

./L(O’ /\l,...,/ld—l SO ‘t}la‘t t/‘j—l =' jy J = l,2,ooo,d"l and ‘t'/oid-l=/u—ou
_ ’ ) T~ . a3 .

Let /lt“,ﬁl+ "‘+/l‘d-—l & Tn—l(T QM3 F). Duality Theorem in this case

may be also formulated as follows:

(I) For all i, g,('iln- = §,¢ (v, i F)

(II) For all i, n},( (M5 F) o~ T G%“,’;mn;}‘).

n-



2, Isometric Forms of 3-lManifolds

Consider a compact, connected and oriented 3-manifold

epimorphisnx'k:'ﬁl(ﬁ) -~ <t> , For the infinite cyclic cover [ of
M associated with Y, Duality Theorem (II) with rational coefficients
qQ asserts a duality
1y ~
g o) = 7 (Male).

L . 15 o~ e AP N
This implies that the cup vproduct U: T (m,w)X‘I (M,9M; Q) = TN W)
% (’T‘-’ ‘ : : 3 i £ % f th
(= T, M;Q) = Q) is a dual pairing. From the exact sequence of the

o~ . » . : ) .

pair (M,3H), we obtain the following commutative (up to sign) diagram

of semi-exact sequences:

O 3 % N\ b g 3% ~ 3 o~ s v
(M) 5% 06N & oL}, 5H-I ot LTS 22T -4 22T,

1, (1,072 1, (372 v, (F)—Les 0 (3, 50 2on (0T —Laor (7).

We may have a ( generally singular) skew-symmetric cup product vaziring

YIS "] L (ad o~ N
Us TH(F,90) X oL (W, M) — 12(H,90) < @ such that the following trisngle

13 commikalive &

(3,97 X oL(F,9M)

\l j*xid, P T2 (T, 9M) =q.
1~ 1.~ o "_‘/f,«{"
() x o (F, )
2.1.Definition. The ideal order Ay(t) of T, (%;0) as a

Q{tj—module is called the (one-variable) Alexander volynomial of

with}r . Further,.the ideal order h)(t) of TiGV}Q)/Imi* is called the

Hosokawa polynomial of M with X‘. [Note that the Alexander polvnomial

-9 -
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is defined to be a non-zero polynomial. This attitude is near to that
of R.C.Blanchfield[1]. If M is without boundary, the Hosokawa
polynomial is the Alexander polynomial. ]

Now we let H be the quotient Q[t]-module T (¥,3M)/Im¥. Tt
follows from the above diagram that the ideal order of H 1is h](t°l).
[Use the equality (tu)ilk= t‘l(uiy,a) and the duality MM : H =
T (1)/In i,.] The skew-symmetric pairing U: oL (M) x 1 (H, M) = g
induces a skew-symmetric pairing U: HXH - Q, since j*§ = O.

We say that the pair (M,¥) is admissible if the boundary M
is empty or the union of tori of genera one,for each component N of
which the homomorphism T*:'ﬂi(N) —> < t'> induced from ¥ is
non~-trivial.

2.2, Lemma. For any admissible pair (M,Kﬁ),,the row seguences

of the following disgram

0t —> (3,0 — o1H) s ol

’-‘-\L/‘ﬁ :\1 O z\Lry; = |
2, (7)) e 0 (M) —des 1 (7,30 1 (1)

are exact.

Proof. Since Tl(yﬁ) = Hl(}ﬁ}Q), it follows from the exact
csequence of the pair (ﬁ;éﬁ) that the lower row sequence is exact at
Tl(ﬁ§ and Ti(ﬁ;éﬁ). Hence the upper row sequence is also exact at

1.5 & 1.5 .
T7(M,31M) and T (M). This completes the proof.

For Simplicity, we will assume the pair (ﬁ;)r) is admissible,’
throughout the section.

2.3, Corollarv, The skew-symmetric pairing IIX}I~M> Q is

non-singular.,

- 10 -
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Proof. By Lemma 2.2, we have Ker = Im §. Hence the
homomorphism H = Tl(ﬁ;iﬁ)/KerJ*-—€> Tl(ﬁb induced from j* 1is
injective. Since the cup product U:Tl(zb X Tl(%,jﬁ) - Tz(ﬁ,iﬁ)z Q

is non-singular, the desired result follows.

2.4, Corollary. The Alexander polynomial A)(t) is a

reciprocal polynomial A}(t) = A,(t—l) and the Hosokawa polvnomial

hf(t) is a reciprocal polvnomial with even degree.

Proof. From Corollary 2.3, it follows that dimQH = deg hf(t)
is even and hr(t*l) X hk(t)' [Note that tuUtv = uUv for all wu,
v€H. ] Further, the ideal order of Imé? is reciprocal, since the
ideal order of To(éﬁ) ié the product of a type t*~ 1. So, the
ideal order of 'Tl(ﬁ,ﬁﬁ) is reciprocal, which implies Av(t)i Azft'l).

This completes the proof.

Define a bilinear form < , >3 Tl(ﬁ;jﬁ)‘le(ﬁ,ﬁﬁ) — Q
by the identity <x,y> = (xUty + yUtx)@A,. (ef. J.W.Milnor[12],
D.Erle(2], A.Kawauchi[8].) It is clear that <x,y> = <y,x> and

<tx,ty> = <x,y> for all x, y & T-(W,3).

2.5. Definition. The pair (<,>,t) is called the isometric

form of the oriented M with the epimorphism 3‘:TC1(M) = <>,

2.6. Definition. The signature of the form < , > 1is called

the Murasugi signature of the oriented ¥ with ¥ .

- 11 -
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2.7. Definition. The nullityv nr(i«i) of ¥ with ¥ is defined

by the egquality

T

n}r(m) = {

Let A be the Q[t]-submodule of H consisting of elements x

with (%=1)(3-1)x = O. Define H = H/A. Then,

2.8, Lemma., The isometric form (= , >,t) induces a non-

singular isometric form (<~ , =,t): HXH — Q.

Proof. For all y e H, <x,y> = 0 if and only if +t(t-1)(t+1)x=0

by Corollary 2.3 if and only if xe& A. This completes the proof,.

Now consider an oriented tame link E in the oriented 3-sphere
SB. Let ¢ have )\ components. By E({), we denote the exterior of
the link (i.e. the closed link complement in 53). The orientations
of ,@ and Y, specify a canonical basis of Hl(E(ﬂ);Z). Choose an
epimorvhism b":T\'l(E(f,)) — <t> determined by sending each generator
of the basis of H (E(Q);Z) to t. By Ay(%), ho(t), ) and n (f)

, respectively, we denote the Alexander polynomial,, the Murasugi

signature and the nullity of E(&) with 7). dhe Hosc kowa poly'mnm‘aﬂ/

The following was first noticed by F.Hosokawal[4]:

o~ ol
2.9. Theorem. Suvpose el(E(ﬂ);Q) = 0. Then Aﬁ(t) = hjgt)(t—l))\-

Proof. Since the pair (E(1),Y) is admissible and $l(?‘f(ﬂ,);Q)=O

, it follows from the exact sequence of the pair (i"(l),}ﬁ( {)) that :

the sequence O —= Tz((émlﬁ&))—, Tlm Ly Tla‘w i Tl@@dg@)—?
- 12 -
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g ] 2 ¥ [ q
Tyl ))—=*> T (E@)— C 1is exact. [ Use the dunl : Ny 3
Q
vy
) =N L e N { H "
Tg‘,g((\), U): C’c‘\.t}/ =1 and Tl(ab(m = LTy, \-t-j ,’A N SR RO RVES ]
\ 7 A - ,
Al<t> = hﬂ(t‘(t—l} directly fo.lows. ey th : R
X P . PR
2.10. Remark. glkﬁff);') = 0 if =nd only i the i orier

P R,
L S )

~ ~ . - o
of H,(BEW);W) is not zero if and only if 4,{(t, is the if
1By 3 2

of Hl(E(Q);Q).

|
'

2.11. Corollary. Suppose BW(E(Q);Q) = 0. Tnen n({)=dir 4 + A,
L o

2.12, Remark. From Theorem 2.9, we see that the Alexander
polynomial and the Hosokawa polynomial are the generalizations oi
the usual concepts. However, the furasugl signature and the nullity

are different from the concepts of K.Murasugill3]. For example,
tMR) =0 and n(@®) = 2, since Hl(EYQD);Q) = ¢lt]/t=1. On the
other hand, (Classical Murasugi signature)(@®) = + 1 and (Clasgioal
nullity)@@j) = 1. [ It seems that our signature is related to the
signature E defined by K. FMurasugi in [14].] Cne may note that
(Classical nullity) < (the number of tne components). (See [1%,Lemns
6.1].) For a trivial link O™ with X compqnents, we have

(0™ = (Classical Murasugi signature)(0>) = O, n(Ox) =1 ( <\

and (Classical nullity)(ok) = A.

- 13 -
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%, Cobordisms between 3-Manifolds

The following two theorems are basically important:

%3.1. Theorem. Let M be a closed, connected, oriented

3-manifold with an epimorphism h‘:TTl(M) —_ <>,

suppose M is the boundary of a compact, connected and oriented

4-manifold W such that

(1) There is an epimornhism TT:TTl(w) — <t> such that

the triangle

T, () '\;)
T}”dhﬁmv _ <t=
Ty (1) ’///?

is commutative,

1

(2) For the infinite cyclic cover I

of W associated with'$,

~

HQ(W,M;Q) is a torsion Q[t]-module.

Then we have (g(M) = 0 and h&(t) = f(t)f(t—l), where hk(t)

is the idegl order of H.

3.2. Theorem. Let Ki’ i=1,2, Dbe connected finite complexes

with rankHl(Ki;Z) > 1.

Suppose there exists a finite connected complex L such that

(1) The disjoint union KlUK is embedded in L,

2
(2) Hj(L,Kl;Z) = Hj(L,K 32) =0, § =1,2.

2,u
Then for all compatible epimorphisms 71: U}(Ki) —= <t>, i=1,2,

Bl is isomorvhic to B2 as Q{tj—modules, where Bi is the

submodule of Tl(Ki;Q consisting of elements annihilated by some

- 14 -
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3.3. Proof of Theorem 3.1. Consider the following commutative

( up to sign ) diagram:

el s @) —2s 527, %0)
= QI‘ ‘:W» %\lnﬁ
5V, %0 2= 1, @) s o ().

)

Lad
It should be noted that the bottom sequence is exact at Tl(m) and
. . 1 ;
,consequently, that the top sequence is exact at T (M), because the

vertical homomorphisms are isomorvhisms by Duality Theorem (II).
~N A~

under the map H — H=t/A

o

Denote by S the image of a subset & of

H
, where H = 11(W), Suppose jfor all i*(x) € Im i* (< H)y <i*(x),y>=0.

This situation is equivalent to §(t-t"1)y = 0 i.e.(t-t"1)y & In ix

, because <i¥*(x),y> = <i*(x),y> = (i*(x)U(t-t_l)y)H}L
(xU (t—t-l)y)ﬂji
=0 for all x é;Tl(g).

Hence we have (t~t_l)y€EIm i*, However, e £ (5-1) (44+1):H = 1§

A

is a monomorphism and hence an isomorphism, because dim.H < +60. Thus
hid

A - A A

”~ A
. . . -1 . B s
we have y<€Im i*, since (t-t " )Im i* < Im i¥., Therefore, Im i* is

an orthogonal complement of Im i* itself under the non~-singular
isometric form < , > . This implies that G%(M) =0 and hT(t) =
£(t)f(s71), (cf. J.Levine[10].) This completes the vroof.

3.4. Proof of Theorem 3.2. Consider an evpimorphism ¥ :7J, (L) —

1
<t> such th R atri " ; O I A v i e .
at the restricted homomorphism YWTE(Ki)_fXEf 'l\\i> —

<t> is also an epimorphism, i = 1, 2. It is always possible, since

i

there is an inclusion isomorvhism Hl(Mi;Z = Hl(L;Z), i=
~ 15~

y 2.
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Let 'i be the infinite cyclic cover of L associated with ¥ .
Decompose Tl(ii;Q) into Bé& Ti, where Ti is the submodule that
contains no elements annihilated by t-1 or t+1. By the wang exact
sequence (cf.[9].), we obtain an isomorphism +t-1: H2(3,E;;Z) =
Hz(ifﬁi;z), since 52(i;xi;z) = 0 and H2C§;§i;z) is a finitely
generated Z[tJ-module. Let 7@%(t) be a presentation matrix of
H2(E,%£;Z) as a 2Z[t]-module. By Wﬁi(t)zp we denote the matrix

2, (t) with coefficients reduced to 2 . Let €,:%[t] = Z, be the

2 2
augmentation reduced to Z?. Since 7ni(t) is a presentation matrix

- A Sl \ b . . . . e o B
of HZ(L’Ki’Z)’721(1)ZQ is a presentation matrix of H2(L,Ki,5)§%§2,
Hence if Ai(t) is the first invariant factor of 7ﬂi(t), then ‘
Ai(l) mod 2 is the first invariant factor of T&i(l)z . However,

~ 2
HQ(L,Ki;z)69§a22= 0. Therefore, A4,(1) # 0 mod 2. SOT A, (21) # 0.

e~ N Lol and X .
Ai(il) # 0 insists that Tz(f,Ki;Q)zHZ(L,Ki;Q) contains no elements
o AN
annihilated by t-1 or t+l. Similarly, Tl(Z,Ki;Q)zHl(L,Ki;Q)
contains no elements annihilated by t-1 or +t+1. The homology
~ o~ .

exact sequence of the pair (L,Ki) induces the following exact
seguence:

f:/.ew rm— s . - N.—\r,

Tz(.b,Ki) — Tl(Ki) — Tl(L) — _Ll(L,ki).

This implies that Tl(L) “is isomorphic to Biam;, where T! is a
Q[ t ]-module that contains no elements annihilated by t-1 or t+1.

Therefore Bl is isomorphic to B2’ since Q[t] 4is a principal

ideal domain. This completes the proof.

%.5. Corollarv. Let M be a closed, connected and oriented

A-manifold with rankHl(E;Z) > 1, If there exists a compact, connected -
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oriented 4-manifold W with gW = M and H2(W;Z) = H‘(w;z) =0

then for any epimorphism ¥: T (M) — <t> we have () = C,
1 ue have G

h?f(t) £(£) (871, £(#1) # 0, and ny(M) = O,
Proof. Hz(ﬂ;z) = 0 dimvlies that the epimorvhism § is

. . . =~ N - ~
extendable to an epimorphism }‘:WT (W) = <t> and that ng(w,ﬂ;@)

is a torsion Q[t]-module. By Theorem 3.1, we have 5}(@) = 0 and
- o~ O
ha(t)= F(t)f(% l). Further, H“(N;Z) = 0 also says that +t-1: hﬂ(1,1,7}

3‘
—_— HZ(WJE;Z)‘ is an isomorphism, which assures that the ideal order
g(t) of H?(W,M;Q) satisfies g(+1) £ 0, as in 3.4, As was shown
in 3.3, £(t) is a factor of g(t); so, f(+1) # 0. This also implies

that nt(M) = 0. This completes the proof.

2.6, Corollary. Let Ml, i=1, 2, be closed, connected and

oriented 3-manifolds w1th rank H (i Z).> 1.

Suppose there exists a finite connected complex K such that

(1) The disjoint union My UM, is embedded in K,
2

<2> H (I\)T

l,u) = H (K, 1?, .1) = O, j = l, 2.

Then we have n33(hl)= n)&(“2> for all compatible epimorphisms

G 0n) = <e>, 1= 1, 2.
Proof. It follows immediately from Theorem 3.2.
For example, let M = sixsixsl ana K&“ﬂi M) —= (Sl):‘&t>
be the epimorphism defined by the projection M= ¢ 1xu XQ — Sl onto
the first factor. Since Hy(W;Q) = Q[t)/t-1 @Alt]/t-1, we have
6}Uﬁ) = 0 and hT(t) = (t-l)g.[These are also justified, by
Theorem 3.1, from the fact that M bounds a 4-manifold W, say,

- 17 -
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, ) , -
SlXSlXB2 with a finitely generated Q[t]-module HZ(?;M;Q).]

However, nw(E) = 2, which implies, by Corollary 3.5, that M is
not the boundary of a compact, connected, oriented 4-manifold W

with H,(/;2) = H(W;2) = O.

o

%.7. Corollary. Let_Qi<lS3 be links with Alexander polynomials

4,(), 1 =0, 1. drite A (%) = (+-1)%L(++1)"1a1 (%), A7(+1) £ 0.

If there exists a (possibly non-locally flat) piecewise-linear proper

1

annulus A 57%[0,1]) in 8%[0,1] with § .= AISXO and

‘"le Aﬂbéxl, then we have ag =a; and b, = by.
Proof, It follows immediately from Theorem 3.2.

3.8.Corollary. If ‘QCZSB is a slice link in the strong sense,

then we have T°(£) = 0, 4p(¢) = ny(t) = £(£)2(+™H), £(21) £ o,

and n(}) = 1. (cf. K.Murasugili3,Theorem 8.4].) by
Proof. It follows from Corollaries 3.5 and 3.7.[Note that

, in the case, there is a canonical isomorphism Hl(ﬁﬁﬁ));:,Hl(@Rﬁ)) ?

and ¥({) Dbounds a 4-manifold W with H2(W;Z) = Hz(w;z) = 0, whéreé

w(f) is a closed 3-manifold obtained from 83 by surgery along Q l;

exchanging the meridian curves on a ftubular neighborhood with the

(uniquely specified) longitude curves on the tubular neighborhood.]

4. Applications

Application. 1. Consider a finitely presented group & with

- 18 -~
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rank Hl(G;Z) > 1. For an epimorphism ¥: G —> <t >, Hl(Kefr;Q) is
a finitely generated Q[t]-module. By Tk(G;Q), we denote the Q[t]-

torsion part . Let A (t) be the ideal order of Tu(G;&). Also,
& T

define a polynomial A(;",)(t) by the identity A(;)(t2)= Ay(£) 8y (=1)

(well-defined). We let };: G —> <t > ——>-<¢>/<t2> = Z?.

Suppose there is a non-zero homomorvhism ™G —= Z, with
¢~£2P2 for all epimorphisms Y: ¢ — <t>. [This situation is

equivalent to saying that Hl(G;Z) contains an element of order two. ]

Then denote Ker[d -5 7 by G . Further, we let FQ Fe ¢ — <t>

)
be the composite epimorphism and A%Xt) be the ideal order of

Tw(Gq‘;Q).

We shall show the following:

Theorem A, Consider a finitelv vresented group G without

2-torsion (i.e. x°= 1 implies x =1 in G) and with H(%Q)= .

Let §': G —> <t> be an epimorphism. If G is a 3-manifold group

, then the polynomial Ag§>(t) or

A;(t) is reciprocal,

Remark. For an arbitrary finitely presented 3-manifold grouv
G with. Hl(G;Z) = 7, there is & more explicite characterization of
the .polynomial. (cf. A.Kawauchil6].)

A

A (finitely oresented) 3-manifold groun is a (finitely presented)

group isomorphic to the fundamental group of a connected 3-manifold
that need not have any other condition.

Proof of Theorem A. Since G 1is a finitely presented Z-manifold

- 19 -
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group, it follows from a result of D.E.Galewski-S.G.Hollingsworth-

D.R.¥ecMillan,dr.: On the fundamental group and homotopy type of

open 3-manifolds (preprint) that there exists a compact 3-manifold

¥ with TTl(M)fi G¢. In that case, we can assume that 9 contains
no copnies of 82. Also, we have that 9% contains no copies of P2,
since G is without 2-torsion. First suppose oM # @. Using

rank H,(M;Z) = 1, we obtain that 7X(I) > 0; so, ‘X(9i1) > 0, for

1 (
N(M) = 2 K(1). Since neither 32 nor P2 is contained in 3JM, we
have ‘R(RM) =%(M) = 0. Accordingly, HB(M,QM;Z):u HQCBM;Z) and hence
it occurs either that M 1is orientable and ahﬁzzSIXSl or that

M 1is non-orientable and each component of @M is a Xlein bottle
SIYCSI. In case M 1is non-orientable, we can further assume that

, for each component Slxtsl of MM, the inclusion homomorphism
Hlﬁf&gﬂjz) — Hl(M;Z)AforsLmQ (= Z) is non-trivial. [ Otherwise,
we will attach the solid Klein bottle S$XpB° to M along this
5¥%5': H' = HUSXB®. Then we will have H (M';Q)= H (;Q) and
Hl(ﬁ“;Q):b Hl(ﬁéQ).] Thus, the pair (M2,'Ké) is always admissible
for any I, where M2 is the orientation cover of M and kbz’ﬂi(mé)

— <té> is the epimorphism deternined by the composite

KE:"ﬂi(M2)<JH}PU — <>,
1

1

Case(4): M is orientable. Since OM = S~ S or ¥, the vair (i,¥)

is admissible. This impnlies that AW (t) = A (t—l) by Corollary 2.4;
h.

hence A(§)<t) = A(i)(t_l)-

Case(2): ¥ is non-orientable and ﬁé: TTl(M) —> 7, gives the first

Stiefel-Whitney class of M, In this case, M is the orbits space

2

ﬂ/@t2> and a generator t? of the infinite cyclic group <t2> is

- 20 -
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is given by t2. Let Aﬁjt ) be the Alexander polynomial of My
with KEF Consider a rational matrix (@ representing the linear
isomorphism +t: Tl(u,q) - T (w,W ( for a suitable basis ). Then
a(t)) = aet(v%5- @) = et tn-(})det( Q) = h(t)a,6) = A%?>§t2).
Thus, Ax( t) = (b>(t)‘ Since the pair (I, 3}) is admissible, by
Corollary 2.4, we have A¢£t> = A&£t'l);so, A(ig(t) = A(ig(t-l).

Case(3): M is non-orientable and the first Stiefel-Whitnev class

T ) = Z, satisfies ¢ # ¥5. In this case, Y, =%¥T ana

t, = t. Since the pair (Mz,Kw) is admissible, from Corollary 2.4,

_]_)

the reciprocity A§(t>ré AEIt follows. This completes the proof.

Example. The group G(o Q) = (a, b; a 1pPs = %) is a
MM

J-manifold group if and only if ol = |o| or pq = O.

This answers a gquestion due to William Jaco[5,Question 13].

Proof. It is not hard to construct a 3-manifold for the case
ol = qu or vg = O. Hence it suffices to show that if |n| £ l|q|
and pq # 0, then G(p,a) is not a 3-manifold group. Suppose G(p,q)
is a 3-manifold group. G(p,q) satisfies the assumption of Theorem A.

AJ;?jt) 1s not reciprocal: Aylt) = qt - o (or pt - q); hence
2 ’

A(i)(t) = q2t - p2 (or p°t - qg). Since Ipl £ lo] and vq £ 0,

A(Z)(t) is not reciprocal.

A¢(t) is not recivrocal: If there exists a non-zero homomorphism
_B\ &

0 G(p Q) Z, with (M# f}, then |p-q| must be even, since
1 - .
Hl(G(p q)’Z%V 7 D LD —q * In case p and q are even, we have a
il ]
bresented group ?; q) = (a, b, c: a lbp/za = bq/2, e /d G’ )’

where we haveiﬁ'(a) = kw(c); =1,
- 21 -
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oy
(p,a)

In case v and g are odd, we have a presented group

1 q

(a, b; a~b’a = b%). [Avply the Reidemeister-Schreier method. ]
In either case, we also have ﬁ?(t) =gt - p ( or pt- q). Since
ol # lgl and »q # U, A (t) is not reciprocal. This completes

the proof.

Application 2. Let M be a closed, connected and orientable

3-manifold with rank Hl(M;Z) =r>1 and W Dbe a closed, connected
and orientable 4-manifold with rank Hl(w;z) =r-1 or r, and
H2(w;z) = 0.

Theorem B. If there is a piecewise-~linear embedding f:M —= W

such that the induced homomorphism f*:Hl(M;Z) — Hl(w;Z) is an

epimornhism, then for any epimorvhism Eﬁ‘ﬂi(M) — <t> we have

GSKM) = 0 and hbjt) f(t)f(t—l). Furthermore, if Hl(M;Z) yig

free, then we also have nk(M) = 0,

T

Proof. We identify (M) with M. M separates W into two
submanifolds. [Notice the assumptions.J It is easily checked that

one of the submanifolds, say, W; has Hz(wl;z) = 0. So, HQ(WI,M;Z)zo
oy Poincaréd duality. This implies that any epimorphism 'E:XTI(M) -

<t> is extendable to an epimorvhism ﬁf:‘wi(wl) - <t>, Since
Hz(wl;%;Q) is a finitely generated Q[t]-torsion module, from
Theorem 3.1, we obtain that Q) = O and hy(t) = £(t)e(+~L). 1f
Hl(M;Z) is free, then we also have H2(Wl;Z) = 0. By Corollary 3.5,

nxiﬁ) = 0. This completes the proof.

For the svecial case: ¥ = a homology orientable handle and W=
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a homology 4-sphere, Theorem B has already obtained in [8].

Example. Consider an orientable torus bundle M over Sl(i.e.,
M 1s an orientable 3-manifold that is a fiber bundle over & with
fiber a torus of genus 1). Such a2 bundle ¥ is completely

determined by the fundamental group presented as follows: (t,u,w:

1 a b 1

uw = wu, tut = uSw, twt" (@

b .
e a ) is an

= ucwd), where p=
integral matrix with det§)= 1. We will fix the words %, u and w

and set ¥ = Mp . Let p : Mp—> s

be the bundle projection that
corresponds to an epimorphism kﬁ ﬂrl(Mp) - <t>, Then it holds that

the projection p : My —> Sl = SlX*CZSlXS3 is not homotovic to anvy

piecewise-linear embedding M? —9-81X33 excevt for two vossible

cases: Q = E, -E.
L o s . . . .
Proof. Let MQ be the infinite cyclic cover associated with

the above §'. In case Q% B, -E, we have 1 < rank Hl(E'VEe;Z) < 2.
(t—a ~-b

t-d
If a+d# +2, then h,‘,(t) is irreducible, If a =d = +1 and

p2+c?4 0, or if a+d= +2 and a £ 4, then 1, (Tp; Qe alt1/(471)%,

~n 2
Hl(Mp;Q) has a presentation matrix ). hzjt) = t7=(a+d ) t+1,

Hence GEKMP) = #1. Thus, in case Q# 3, -E, from Theorem B, there
is no embedding HMp—= 5X5° homotopic to p. In case p=% or -7,
it is easy to construct the desired embedding. This completes the
proof.
I ug 3 w]x rxl Ol - _ e

Remark. If § = E, then M, is clearly SXS X5©, If P= -z,
then M p can be visualized as the boundary of a regular neighborhood
of the "standardly" embedded Klein bottle in R4.

Application 3. Consider a compact,connected and orientable

4-manifold W with connected boundary JW. Suppose Hl(W;Z) =0 and
- 23 -
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HQ(W;Z)ﬂ: HlG)N;Z)::@Em for some m > 1.

lal

Theorem C. If there exists a basis for HQ(W;Z) such that the

generators of the basis are represented by nutuallv digsjoint,

niecewise-linearly embedded 2-spheres, then we have n}(aw)= O i.e.

h&(il) # 0 for all epimorohisms {§: Trl(}w) —_— <>,

Proof. Let Zy,..., anlcivf be mutually disjoint piecewise-
linearly embedded 2-spheres represgnting‘the basis of HQ(W;Z) and
Nl,...,Nm be the mutually disjoint regular neighborhoods of fil,;.”-
3, in W, respectively. Since W - ZlU...LVEiI is connected, we can
perform a disk sum of Nl""’Nm in W. Let N Dbe the resulting
4-manifold Nlb co QN‘ in W. Bince the inclusion NCW induces

an isomorvhism H,(N;Z)~ H,(W;Z), we obtain that Hy(W,N;Z) =

H, (W=W,dN;2) = O. By Poincaré duality, H,(W-N, dW;Z) = 0. Hence by
Corollary 3.6 n&ﬂBN) = nk(aw) for all compatible epimorphisms U
and ¥ . Note that OF = Ny ... N and H (8N;2)= Hl(‘aw;z)z@zm.g
This implies that for all i He(W ;2) D H(5'X8%;2), since N, is
a regular neighborhood of the 2-svhere jii‘ oince, for any
epimorphism §t: W, Q) —> =~t>, h?&,<_+_1) £ 0 i.e. na},(‘arsiﬁo
(ef.[6].), it is not hard to see that ny(3N) =0 for all
epimorphisms }“:”WHKBNJ — <t>, Therefore we have n&(aw) = 0 for

a epvimorphisms . is completes e proof.
11 evimorph Th let the 1 T

Examole (cf. Y.Matsumoto[1ll].) We consider the link klU k, in

57, illustrated in Fig. 1.




Since the linking number of kl and k2 is 0O, we can specify the
longitude and meridian curves on a tubular neighborhood of each k
such that the longitude curve is homologous to O in Sz—k.. Let
W Dbe the 4-manifold obtained from D4 by attaching two 2-handles
2r 2 2y 2 X . e oa <o
D°XD 1 DXD > along the tubular neighborhoods with the specified
longitude and meridian curves, so that the boundary QW is a

3-manifold obtained from 33 by surgery along the link k U k,

exchanging the meridian curves with the longitude curves. It i

0

clear that W is a simply connected 4-manifold with connected
boundary and that HQ(W;Z)ﬁmfﬁfaw;Z):t Z®Z. Note that the element
?i of Hz(W;Z) related to each ki is certainly represented by a
locally flat 2-svhere and that§ ?1’ ?2? forms a basis for Hz(w;z>.
It is immediate to see that the intersection numbers ?lffl’ §7?°f2,
?lfSZ are all O and ,hence, that each two elements of H?(ﬁgz)
has the intersection number 0. Y.¥Matsumoto[11l] showed that 'f1

and ?? can not be represented by disjoint, piecewise-linearly

embedded 2-spheres by using an invariant of R.A.Robertello[lSJ.

We shall show that any two elements of Hg(W;Z) forming a basis

can not be represented by disjoint, piecewise-linearlvy embedded

- 25 -



106

2-spheres.

Proof. Let t, and 1%, be the elements of H,(dW;Z) related

1 2

to kl and k?, respectively. The set $ tq, tq} forms a basis Tor
— . [

1, @W;2). Let g :TTi(Bw) — <t> be the epimorphism sending each t

to t. Since Tl(aaﬁQ)ﬁb_Q[tJ/(t—l)2, we have nziaw) =1 ( or

hail) = 0). Hence by Theorem C the desired assertion follows.

By considering the disk sums of copies of W, we can produce

infinitely many simply connected 4-manifolds with similar properties.
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