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Classical invariant theorvy

Herbert Popp

This report describes the use of classical invariant theory in
the theory of moduli of algebraic varieties and in elementary
geometry.. Haturally there is some overlap with the recent paper

of Dieudonné [2:]and the book Dieudonné& and Carrell [3] .

Invariant theory was first related to number théory going back
to the Disquisitiones“Arithméticae of GauB and the theory of
quadratic forms in two variables. Let £ = ax2 + 2b Xy + cy2 be
such a quadratic form; then if the variables X,y are changed by
x=Lx' +py', v =sz' + X’y‘ with (?g)e SL(2,C), another quad-

2

ratic form £' = a'x'" + 2b'x'y' + c'y‘z is obtained. The dis-

2 '

criminants of these forms are related by b'" - a'c' =

(b2 - ac)(&&V—B@)z and therefore are the same. Gaufl knew that

< ‘s 2
the discriminant A= b

- ac is the main invariant of binary
quadratic forms, i.e. that every polvnomial F{a,b,c) in the
coefficients a,;b,c which is invariant when SL(2,€) is applied

4
according to the above rule, is a polynomial in.ﬁs). Starting
from this observation, GauB developped his arithmetic theory of
rositive definite quadratic forms with integral coefficients.
fle determined the number of possible representations of an
integer by a given quadratic form and introduced the fundamental

notion of equivalence of quadratic forms and the class number of

the discriminant. We refer to LStIfor this beautiful theory.

A
)GauB knew this fact also for quadratic forms in three
variables. Compare [6 ] .
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In the middle of the 19th. century, invariant theory branched
away from humbér theory in wvarious directions. Cayvley [4], and
later F. Klein in his Erlanger Programmn {ﬂi], considered
invariant theory to be the algebraic countefpart of the geometry
of those days (elementary geometry in todayvs language) and used
it to classify the elementary geometries. Sylvester, Hernmite,
and the German school with Aronhold, Clebsch, Gordan and others
treated invariant theory as a purely algebraic theory. Their
aim was tokfiﬁd explicit:c algorithms. In 1350, Hilbert solved-
the main problem of classicalAinvariant theory by showing that
there exists a finite basis for the invariants of the n-arv
forms of degree r with respect to the action of SL(n,¢C). After
Hilbert's success, a big unsolved problem did not exist anymore,
mathematicians lost interest in invariant theory until the
1930's. At this tiﬁe, renresentation theory of the classical
groﬁps was being develépped by Schur, Weyl and others, and a
part of classical invariant theory‘was recognizeﬁ‘to be a
special case of this. But even then, no essential new contribu-
tion was made to invariant theory.‘In1963ﬁMumf0PdEﬁﬂPeViV®dthe
study of classical invariant theory and found the geometry
behind the invariant theory of n—ary;forms, in particular:beh;nd
Hilberts papers‘:ﬁ] andi&O] , and showed that the theory Of :
moduli of aigebraic varieties is the geometric frame for

classical invariant theory.

We first deal with the relationship of classical invariant
theory to the theory of moduli of algebraic varieties, and then,

in a second part, describe its connection to elemenary ceometry.
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(Unless otherwise stated, we take the complex number field to be

our bhase field.)

In 1845, Cayley posed the problem of determination of all
relative invariants of the n-ary forms of degree r. Vhat does
this mean?

Consider the general n-arv form of degree r, f(x1,...,xn) =

o, o . . . . . .
2: A&x{*...xn” with coefficients A‘ which are indeterminates

over €. Consider the action of GL(n) on the tuple (Aa) given by
the rule
( (Aﬁ) — s (o(n))) = (A& ) where

Ae and Ay are related via the corresponding
4 polynomials and by having e GL(n) act on

the variables X1”"’Xn’ i.e. by

L E(T(xy),enn,olx)) = S ANY X

A homogeneous polynomial F(Aﬂ) in the indeterminates A, is

called a relative invariant if

F(s(nr,)) = X(&) . F(A)
holds for all GeGL(n,C), with 'X(T) a character of GL(n). It is

called an absolute invariant if A(s) = 1, V@re GL(n) . Cayvley's

aim was to determine all these invariants expliciﬁly by an
algoritiam. ' |

In today's context of algebraic geometry, we may formulaﬁe
Cayley's problem as follows: F'irst check that if you take the
group SL(n,C) instead of GL(n,¢) and its action on (A$) by (),
the relative invariants of GL(n) coincide with the absolute

invariants of SL(n).
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e . ' oL
ilext consider all n-arv forms £ = zia&x1‘...xn of degree r

(with coefficients in €) and parametrize them by the noints of

X . N+ . . . . .

the affine space A 1(G:) via their coefficient (H+1)~-tuples

(ao,...,aq). Then () induces an action of SL(n) on the affine
i

¥

I+1 5 1 . . i
space A" and also on the polynomial ring R = GtAO;...,Am of
AN

N+T o g s ‘o 3 s
A which is homogeneous with respect to the natural grading
of R. The absolute invariants of this operation form a graded
subring 8 = S(n,r) of R consisting of all polynomials which are
fixed by the action of SL(n). Cavlev's problem was to deter-

mine the structure of S as a ring in today's mathematical

terminology.

At this point, Mumford's interpretation of the invariant theory
of forms can be explained. Mumford's intention is to classifyv
’the hvpersurfaces of Pn-1(®) of degre r up to projective
equivalence and to make the set of isomorphism classes of these
hypersurfaces (isomorphism classes according to projective
equivalence) into an algebraic wvariety in a natural way. As the
hypersurfaces in question are parametrized by the points of

PN = Proj(R), and the equivalence undef consideration is given
by the action of PGL(N) or SL() on R via the rule (»), Mumford
looks at the rational map tf: WN = Proj(R) —s Proj(S) and at
those points of FN where f is defined. If NO is the set of all
points of PN where all the non-constant invariants of R wvanish,
(The set of Nullforms, in Hilbert's terminologv), then No is a

. N . . .
closed subvariety of P and-Y is defined exactly for the noints

in PN—NO, the complement of No in PN. In Mumford's terminology,

P‘«xo is the set of semistable points of P with respect to the
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action of SL(n) on P" and is denoted by (P")”°. The man

Nys5s
)

N) SS yitn

g: (P — Proj(8) is a categorical cuotient of (P

respect to the action of SL(n) in the category of schemes

satisfying certain additional properties. iiowever Proj(S) and
. N, ss . . :

the nap § ()77 -—> Proj(S) do not vet give the desired

classification for hypersurfaces corresponding to the points

(@) 5%, 1n general the action of SL(n) on ®")®% is not with

closed orbits and therefore ¥ does not separate orbits. We have

to restrict ourselves to the subset of stable points (PN)SziFs
of (PN)SS, which are defined bv the properties that their orbit

N)SS and is of maximal dimension. The stable

is closed in (P
points form a Zariski open subset of FN;fﬁfis an open subset of
Proj(S) which parametrizes the orbits of Ps_by SL(n). In
“lumford's sense, the map Y: P —» T(PS) is a geometric quotient
of p° by 3L(n), and f(?s) classifies the hypersurfaces of
Pn-1 which correspond to stable points of Pm up to projective
equivalence. This internretation of the invariant theory of
n-ary forms of degree r leads Mumford to his theory of quotients
by group actions in the categorv of schemes and to his proof of
the existence of a quasi-projective scheme which is a coarse
Jor
moduli space for curves of genus g and¥holarized abelian varie-
ties of a fixed dimension. In this sense, the invariant theory
of forms bhecomes a part of the theory of guotients bv group
actions in the categoryv of schemes and of moduli theorv and
nrovides us with the rossibility to describing modulil spaces

explicitlv.

Let us return to the structure of the ring S. The problem can
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be attacked on two levels. The first and easier is to determine
the graded parts of S. This is a linear problem and can be
solved by representation theorv. The method for the second

level is to determine the rin

2

structure of S by finding gene-
rators and relations for S. This is nuch more difficult and

only in a féw cases 1is the result known explicitly.

Ve first treat the linear problem, but brieflv, since it is well

explained in the literature (cf 54?1, [2;1, [f3]).

Consider more generally the following situation: Let E be a
vector space over € of dimension m. Let GL(n,{) operate on I
linearly and let £ : E —» € be a relative homogeneous polyvnomial
invariant of degree r (i.e. £(x) is a honogenecus polynomial

and £(v(x)) = X(T)f(&) holds for all <reGL(n,®).)?) e show
that to determine all suchh f£'s it suffices to determine the
1-dimensional invariant subspraces of an action of GL(n) on a
certain other linear space. Consider for this purpose

f(’A15;>_~;_1 + ... +’.\r>_<_r) = )_c‘/j‘f”C (Xq0--- ,}_{r) with vectors x; € &
*g(d‘h"’v"‘f)
and indeterminates A.,. Then f (Xq4,...,%X.) 1s a relative
i (1,...1) =1 =r

multilinear invariant of the vectors g provided f is a relative

homogeneous invariant and vice versa. 'loreover f(1 1)(§,..L§)
P 7

= r! f£(x), and hence f(1 ...,1)(x1,._.i

Er) determines £ (x).

2) v
For applications, it is later necessarv to consider more ¢ene-

ral rational relative invariants f£:E — €, i.e. rational

functions f(x) for which f(sx) = A(s) - £(x) holds for all

¢ GL{n). An easy argument (cf. [3] ;P. 3 ) shows, however,

that the rational relative invariants are known, provided

the homogeneous relative invariants can be determined.
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le may therefore consider the nmultilinear invariant u,. =

E
Br

e . - N
v BT —a» € instead of £. Xext let %F . BT -—» ¢ bhe

£ '
M1,e...1)
the linear map determined bv ug- Then HF is a linear relative

Y

invariant of L as u,. is a relative invariant and conversely .

f
&r

. . , . . - HEOY
Finally consider the natural isomorphism Hom (L™~ ,€) = Jer

@}C

®Qr - i . .
& €. induced by the ¢given action

with the action of GL(n) on E
of CL(n) on E and by the character X(s) of £ on €. Then ﬁf
. . . KET oo

determines a 1-dimensional subspace of B & € which is G-
invariant. Conversely every such subspace leads to a linear rela-

: . \ ﬁ@t . . ,
tive invariant of E with X(s7) as character. So, we attempt
to determine 1-dimensional invariant subspaces of the represen-

: ol (R4 ; *®r al ~

tation as described above of GL(n) on I~ (¥ €. Therefore we
now consider the representation theory of GL(n).
Let X ——» I (X) be a homogeneous representation of GL(n,T) in
GL(11,C) of degree f, i.e., F defines a group homomorphism and
the matrix elements Fp, (X) of the matrix F(X) = (Fhk(g))e-GL(N)
are homogeneous polynomials of degree £ in the coefficients Xy s

3 3

of the matrix X = (xij)

€ GL(n,€). Consider F as a map from
GL(n) to End(C"). Then F factors over End( (g

f
)® ) as follows.
There exists a comnmutative diagram

GL(n) £ . .End(CN)

N A

“End ((€MH®F)

~
where ¢ is the tensor representation ' GL(n) »-;GL(Cnfb*) and

—

s . . » . . nG£
3 is a ring homomorphism from the subring A, of End ((C f@ ) ;

3 1In deneral rational representations X— F(X) of GL(n) in
GL (M) have to be considered. llowever , cf. [3], the homoge-
neous representation determine the rational representations.



generated by q(g) with X eGL(n), to End(@J). To rprove this fact,

, . . s - n )
we recall that if @1s...40  is a basis for & = €, the set
& f

. % . , .
€, T €, .. €y of vectors in E¥" forms a bhasis of L where
=

IF

1
(&1,...,¢f) ranges over all multi-indices §_=(¢1,...,if);

1 4a%;_n. The matrizes of End(E

) can then be written as
(tdg) where i,iéis a rair of multiindices and the tensor

. £ oy .
representation GL(n) — GL(E C ) is described hvy

% £

e
]

) —> (x,,) =3

_;—.

where X X, o s e X

= 1 1 e B is the monomial in the coefficients
= v T« i

£
-z 3 ~ : 3 ] e} . . - L 2 1 ~ 3~
%35 of X determined by ¢ and 5. Obviously X %é&-lf there

e m— e G
e with T =%, "3=4".

exists a permutation S

Hext, the homogeneous polynomials Fhk(g) can be uniquel:

written as

() Frp (X)) = 2 ay,s¥ep

if we impose the condition a Z= a on the coefficients

Rk WL W hk«n

for all Wel§.. Using the expression (*), we define a map

o £

G : ena((¢MH®) —s rna(ch

m - 4 . N o
: 0oF
where G, (T) = Z;a‘xw% t . - One may check that Q}ﬁ%") = F(X),

A= —_....

and that G is a G€-algebra homomorphism of Ag into pnd (€7) .
A simple but very important observation is that the ring Af is

closely related to the natural representation of the permuta-

: . L& E
tion grour T . of £ elements on the linear space (€ fﬁ .

)Cm

Clearly wef3 acts linearly on (€ by the rule we, = e
e —

with Td = (u&7(1)"":iﬁfff))‘ This induces an action of the

OFf
group ring &€ Gé} on E and a C-algebra homomorphisn
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§ ¢ GLG%] —>End(E” 7). As A_ consists exactly of those matrices
T = (t,,) ¢ tnd (¥%) for whicn t = t_, hold

I = (ty,) € Lnd or which Td,mp © ten ROlds \‘/“H‘éﬁ'ff

we conclude easily (cf.\lS], p. 14) that A; is the commutator
of K(CES%] ) in End(ﬂgf). How Maschke's theorem (cf.[j3]),
states that CESE] is semi-simple, and therefore g(@ E?é ) is
also semi-sinple. Then Schur's commutator theoren (cf.irsi])
implies that Af, as the commutator in End(égf) of a semi-simple
algebra containing the centre € is semi-simnle as well. But
then the image Q(Af) is semi simple too and hence the represen-
tation I : CL(n) —> GL(N) is completely reducible. In this way,

we obtain the theorenm

Theorem Everv homogeneous representation (and then also every

rational representation) of GL(n,C) is completely reducible.

We are now able to calculate the 1-dimensional invariant sub-
spaces of the representation F of GL(n). As a matter of fact,
Schur's commutator theorem even describes explicitly the

simple Af-modules of the f's tensor representation of GL(n)

(or equivalently the minimal left ideals of Af) in terms of the
minimal left ideals of the group ring CES%]. If ¢ is a
generator of a minimal left ideal of @[?%] , then Af—module

c-ﬁyr

is a simple Af-module and all simple Af-modules are
obtained in this way. It suffices, therefore, to determine the
rminimal left ideals of CB?%] . It is possible to do this
explicitly by the method of Young frames; we refer to {:3'} for

a detailed description. In particular, Young's method allows

us to describe explicitly the 1-dimensional GL(n)-stable
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subspaces of‘E@f and then also those of CN.

Ve discuss some applications:

a) The simultaneous multilinear invariants of £ vectors
x1,...,xfé,E = ¢" appear in the linearisation process from
page 6 and are therefore of fundamental interest. The aliove
method yields the following theorem, called the first
fundamental theorem of invariant theory: )

Theorem Simultaneous multilinear invariantg)of f vectors

of E exist if £ is a multiple of n, i.e. £ = g.n. They are

all linear combinations of invariants of the form

T N IR S EOPUNORES i)
where (i1,...,if) is a permutation of (1,...,f) and
1?1,...,2;] denotes the determinant of the (nxn)-matrix
with 21,..:,zn as column vectors. All the invariants have

weight g.

b) In applications of invariant theory to elemenary geometry,
the simultaneous multilinear invariants of f covariant
vectors x1,...,xfe:E = En and h contravariant vectors
y1,...,yhe E¥, E¥ the dual space to E, all with respect to
the natural action of GL(n), are needed. The above method
vields the following result, called the second main theorem
of invariant theoryv:

Theorem All simultaneous multilinear invariants of the
vectors Xy and y,; are linear combinations of products'of
invariants of the three typsr
1) [x. K. ] of weight 1

11 inl

4) Invariant = relative invariant, also in the following.
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...11...

2) LY- eV 1 of weight -1
31 Inl

3) Scalar products (ki,yj> of weight 0.

“loreover, they only exist if »-q is divisible bv n.

The honogeneous invariants of decree h of an n—arv form of

eaqree ¥ can be determined also.

Ca

First, a unicue symmetric r-linear form wk associated to a
form £(x) = ZZ§¢ xﬁﬂ..x:fof decree r in the variables

X = (x1,...,x ) is obtained as follows: Rewrite the form
f({x) as

(%) f(x) = ‘2"{5(11,...,11,) Ky oo ¥y

vhere the r indices i, run from 1 to n independently and
where the syvmmetry condition ﬁ(i},...,i;) = p(i1,...,ir)
holds if (i},...,i;) is a permutation of (11,...,ir). Then
the expression (%) is polarized according to the rule of
nage 6 to obtain the desired svyrmetric multilinear form \yf
of order r.

If we consider 'Wf instéad of £, the problem becomes deter-

riination of the homogeneous invariants of degree h of the

rmultilinear form>q%. Ve know (see page F ) that this is

equivalent to finding the simultaneous multilinear invariants

of h svmmetric tensors UqsesesUy of the srace (tnf&r with
respect to the natural action of GL(n). But this again is
equivalent to findinj the sinmultaneous nultilinear invariants
of hs»r wvectors of €, whmich we are able to do. So we write
down a basis for the simultaneous multilinear invariants of

h'r vectors of €@ using the first main theorem, and must
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then translate and rewrite the obtained invariants in terms
of the coordinates of the form f(x). There is a formal
symbolic procedure, the famous svmbolic nethod for writing

the simultaneous linear invariants of the h.r vectors

f..l-

n a
certain way and then for rewriting them in terms of the

coefficients of f. We refer to Lﬂ?} and LSQ]for details.

What do our considerations give for Caylevs nroblem of detexr-
mining the structure of the ring S(ﬁ,r) of invariants of n-arv
forms of deqgree r?

Clearly without additional considerations we can only obtain

the graded parts of the ring S(n,r); the ring structure is not
obtained in this way. But what is then known about the structure

£ 8(n,x)?

e

irstly, S{n,r) is, as the fixed ring of C(é;] by the action of
the group SL(n), an integrally closed integral domain which is
finitely generated over €. The last fact was proved in 18%0 by
Hilbert [ﬁ‘]'who showed that everv ideal in € {Ai]is finitely
generated (this is Hilbert's Basissatz) and that a finite
system of generators of the ideal I of CI:A;l which is cenera-
ted by the non-constant invariants, generate the ring S(n,r)
over ¢.

We remark, that for n-—ary forms of degree r over an arbitrary
field k, the ring Sk(n,r) = k [A¢iXSL(n) of invariants, with
respect to the obvious action of SL(n) on k.[A;] is also
finitely generated. As a matter of fact, by llaboush's recent

result [8?}, for k with any characteristic, SiL(n,r) is
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geometrically reductive and therefore S{(n,r) is finitelv
generated (c.f.tlf}).

But what about the explicit structure of the ring 5(n,r)? Only
in a few cases is the structure known explicitly. First, by

he classical theory [45], generators and relations are known

in the focllowing 3 cases.

(1) n=2, r 6
(2) n=3, r £3
(3) n-arbitrary, r = 2.

In all these cases, the structure of S(n,r) is simple; S(n,r)

is essentially a polynomial ring.

The next (according to the classical theory) unknown cases are
S(2,3) or S(2,7) and S(3,4). They have been treated by Shioda
Ain Eﬁf]. For 5(2,8), Shicda has determined explicitly a system
of generators consisting of 9 homogeneous invariants J2,...,J10
of degree 2,...,10 and has described 5 bhasic relations between
the Ji,which he states explicitly. All other relations are
derived from these basic relations. Moreover Shioda determines
the higher Syzygy-moduls of S$(2,8) and, as a consequence, finds
that $(2,38) is Gorenstein. Tor the ring 5(3,4), Shioda's paper
states what a generator system and a basis for the relations
should be without giving the proof. The method used by Shioda
is the classical one (cf. [4;1), consisting of determining the

generating function of the ring S

h(t,s) = zz;dim Sdtd
dzo
‘which 1s a rational function and for S(2,3) equal to
‘ / n + ‘ .
(1+t8+t9+t10+t1°) ‘WT1—td). Knowing the generating function,

d=2



one can estinmate the minimal number of gcnerators)for S5(2,3)
the number ist 9. Then it is to a great extent a natter of
skill to find generators explicitly by the svymbolic method and

sasic relations between

et

t iz even more difficult to find the

e

the choosen generators.

It is of interest thatbthe rings 5(2,8) and S(3,4) are related
to the moduli space of curves of genus 3. !lore generally,
5(2,2g+2), with g2 2 an integer, is related to the moduli space
of hyperelliptic curves of genus g¢g. To make this precise, we
recall that for a hyperelliptic curve ¥, defined over an
arbitrary closed field k of characteristic § 2, the 1-canonical

1

< 1 . - I - .
map ¢Y:X —» P is a map onto P of degqree 2 with 2¢g+2 ramifi-

cation points Pi = (&, ,B.). The homogeneous nolvnomial

1774
245¢2
flxz,v) = (R.x~%.v) associated to X has discrininant D(f) D,
r= : i i
1z4 - .

Conversely, this determines X, as X is birationally equivalent

Litz
to the plane curve Y2 = ~ﬁ1~§- %@), rrovided all ﬁj £ 0, a
Y :

=4
condition easilyv obtained by a change of the coordinate svysten
of P1. Moreover two such polvnonials £ and g of degree 2¢+2
with discriminant different from 0O éetermine'isomorphic hyrper-
elliptic curves if and only if £ and ¢ are eqguivalent with
respect to the action of SL(2) or PSL(1) induced via a

coordinate change in P . This indicates a fact proven by closer

considerations, i.e., that the open'aLfine schene

3

*roj(S(2,2q9+2) - {D‘= O} is the coarse noduli space for hyper-
elliptic curves of genus g in the sense of L4;},p.iﬁ . In
particular Proj(5(2,8) - {D = O} is the coarse nmoduli for

1

hyperelliptic curves of genus 3 and this facts holds over any
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algebraically closed field of characteristic F 2.

To the ring 5(3,4), the non-hvrerelliptic curves of genus 3 are

related as follows: By the Riemann-Pech theorer, the canonical
§ r . 1 <7 : 1 174 £ ] 2 T}

nap P, of such a curve X gives an embedding of ¥ into P”. The

; . Kooy . . 2 1 . 1w

image curve $K(x) has degree 4 in 7, and two curves X and X

are isomorprhic if and onlv if the curves ¢K(K) and ¢Y,(X’)

. I \

. \2 . . .

in P” are ecuivalent with respect to the action of P

equivalently with respect to the action of SL(3)). A Zariski

open subset of Proj(S(3,4)) is a coarse nmoduli space for the

non-hynerellintic curves of genus 3.

-

{

Jesides the paper of Shioda, the papers[ﬁ{] of Igusa on curves

G

of genus 2, and E}] of Gever on the structure of the ring
5(2,2c+2) and the moduli variety for hyperelliptic curves of
genus ¢, should be mentioned. Both papers deal mainly with the
reduction of these rings modulo p and show that if p >2g+2,
the ring in characteristic p is the reduction of the corres-
ponding‘ring in characteristic 0. For small characteristics
(with resrect to g), particularities appear.

Summing up, we can say that classical invariant theory does not
contribute much explicitness to the theory of moduli.
Professor Shioda, with whom I had several interesting conver-
sations on this matter, expressed the situation as follows:

If you have to describe generators and relations of a ring of

invariants of the tvpe S(n,r), then if the structure of S(n,r)

s

is simple, you will find the structure. llowever if vou are

unlucky and the structure of S(n,r) is complicated, vou will

not be able to do anvthing.



So nuch for the relationship of classical invariant theory to
moduli theorv and to present algebraic geometrvy. In the 19

century, as was already stated, elementarv c

’)

yeometry was closely

elated to invariant theory. This we describe next.

"Projective geometry ist all geometry" Cayvliey has stated in[ﬁj]}

o

-~

then Felix Klein introduced his Erlanger Programm in 1872

What does that mean? First, we discuss Cayley's statement.
Frojective geometry (over the complex or real number field k)
deals with peoints and forms. A sentence of pnrojective geonetrv

= (7é""’3i) and

finitely many forms f =}iq‘ §' and must be independent from

in 7 involves finitely many points (j_l))

the coordinate systen and therefore invariant with respect to
the action of PGL(n). In analytic terms, such a sentence 1is

(i) ()

given by a rational function F(j_ ) in the coordinates of

the points and forms which satisfies the following »rornerties.
- A A,

= F(j‘lIQW(V))I

v R )
V;)l, § € x«{ }. Equivalently, the valuesof F depend only

1) ¥ is homogeneous of degree 0, i.e. F({ i V (V)

on the points and the forms and not on their representing
tuples.
2) F is a relative invariant with respect to the action of
(v rizh e,

%mﬂhie.ﬂﬂfLﬂ% =
5€ GL(n+1), with m an integer, called the weight of T.

Yy = (detw)

A rational function F as above is called a homogeneous invariant.

The homogeneous absolute invariants have meaning in the
n
geometry of the P

. n . . . . - .
A theorem in P is a (polynomial) identity involving finitely
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many honogeneous invariants or, in Klein's terminology, a

syzygy between homogeneous invariants. In this way, the invari-
. e R . . n
ant theory of GL(n+1) determines the geometry of the P .

The following simrle example makes the situation more precise.

- 1 s o
Consicder P'/k with (x,v) as homogeneous coordinates. Let Pi =
X, Ya
¥ Y
is an invariant of weight 1 which is not homogeneous in the

, . . 1 ,
xi,yi), i=1,2,3,4 be 4 points in P . Then inj =

cooxrdinates Xir1Yy- Zsij has therefore no geometric meaning in
projective geometry. If it happens that zxij = 0 then this
statement is homogeneous and has a geometric meaning, namely
hat the points P, and P! are the same.
1 J
To obtain hemogeneous invariants from the ‘Aij’ we have to con-

sider mora then three roints. Four points lead to the rational
Dz Day
Qe Day

well known cross ratio of the points P1,...,P4.

fraction which is an absolute invariant and the

The syzygy

) DBy, B8, v B A =0
leads to a theoren in P1 which has its geometric interpretation
in the well known relation between the 6 values of the cross
ratios of the points P1,...,P4 depending on the order of the
roints. To indicate this, we divide (%) by the last sumnand

and_obtain
A Dy 1 _ AV A
Dag Ay Dag + Dgy

This completes our description of projective geometry by

invariant theorv.
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3~
How, we move on to Cavley's statement that projective geometry
is all geometry. llow are affine geometry, Duclidean geometryknd

the non-Euclidean ceometries a part of projective gecometry?

. \ n o
Let = peee ¥y be a coordinate system in P'. Let e = {x =£J}
n

o o]
= n — n T 1 1 fond 1 1. - v by
and AT =P - i be the complement of the hyrerplane I . A
o0 - T oo
. . - . . . Ny o
is the affine space of dimension n embedded in P with i as

infinite hyperplane.

Cavley notead the principle. that the statements and theorems
of the affine space al on a geométric conficuration, which
consists of finitelv manv noints of An‘and'finitely nany
polynomials or hvnersurfaces of An, are ﬁhe projective state-

ments and theorems on the associated vnrojective configuration

extended by the hvperplane il _ . (ilote, that to a rnolvnomial

-,
— < 1}

f(xj) of decgree r in the affine coordinates X, =75 1= Tiewstis
. i P2y O
. -~ - r "t
cne nay associate the form f(;—:i e = f(xo,...,xq) of degree r

- L0

in the variables x,. LEvery point of A" is considered as o point

i
-
I <11 o ] ~
cf P.) The statements and theorens of Luclidean ceometry on &
. . . n n . .
geometric confiquration of A< P are the projective statements

of the associated projective configuration which is extended by

3]

M
the guadratic hypersurface of oo defined by iy = OiE:'. = 0.

Bt
e

[..J
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The following examples make this principle clearer.
First we examine affine geonmetrv.

L . . n . . . -
Consider, in A, n+1 points Ej = (1,5 ,-- 22) i=29,...,n. Then
- [

Pot Pex | Pow
T e oo e peo ~-- - Pox

(T - 1 P Paz | pa A ‘
\/(IO"."PI}) H' 1 Pae Pao po =

Ppu Per  pam <.
4<Pﬁo Pwo Pwo Pro
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is the well known exprression for the volume of the n-svaplex

. L Pov -~ Pon
determined by the points P, How, the determinant | ¢
1

peo -~ -}bm«
is clearly an invariant with respect to GL(n+1),
y . A . . . . .
Furthermore the fraction ———— is an invariant, as it is the

e " Puwo

inverse of the rroduct of the values of the linear form x, at

the point Pi. V(Pi) is therefore a rational invariant which is

also homogeneous of degree O with respect to the points

b, = (P s++-spin), but homogeneous of degree -(n+1) with

respect to the coefficients (1,0,...,0) of the linear form Xoe
Co o . . . n ss oL

We f£ind that V has no geometric meaning in . This is not

surprising for any measurement needs in general a unit measure.

In other words, we should f£ix a non degenerated symplex

V(Pi) .
= sAs Ll ) ~Y
i) ‘4‘7(@:1‘) W13

is an absolute projective invariant and belongs then to affine

. n . . .
0 in A7 and consider the fraction V(P

) peee ) 1
.-,OI ’ “n 4

gqeometry. This fraction is the volume of the n-symplex
<%O,P1,...,Pg> nornalized by the symplex <@O,...,QA> .
HJext we turn to Luclidean geometry, and consider first the

. N A

angle & of two hypernlanes Zigixi = 0 and Zibixi = 0O (the
n - 1=0 =0

hyperplanes are in A, i.e. different from Hoo); their projec-

tive extensions are as above. Ve rust consider the geometric

e o
configuration consisting of the two linear forms Z:aixi,zzpixi
R-Y) zo
with coordinates (ai), (bi) and the infinite hyperquadric
P (= = 2, %2 22, ™ i £ i ] T -~
‘(Ai) = 0= *xy+ ...x_ . The expression of this quadric in hyper-

. n
nlane coordinates Uree-su of the P [?o”"’un dual to

n
. . N _ 2,2 2
xo""’kﬁ] is b(ui) = Oeuo+a1+ .o +un.
The values of the quadratic form ¢*(ui) at the linear form (ai)
Mmoo . &9
1 1 ~ ¥ . = o~ o ¥ 1 J A A e! = <
and (b,), i.e. ¢ (a,) Zzai respectively ¢ (by) Elbi are

T=a 151
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M
absolute invariants. Also the polar form O'aobo‘+jigibi is
&= be =4
an absolute invariant. Therefore cos W = 2k,

Y PHai) - P(W)
is an invariant. Moreover cos« 1is homogeneous of deqgree O
with respect to the coordinates (ai), (bi) and alsc the coeffi-

cients (0,1,...,1) of the quadric form O.u§+u$+...+u§. lience,
i

cos W 1s an absolute homogeneous invariant of the two hyper-
planes and the guadric q>(xi which belongs therefore by

Cayley's principle to Euclidean geometry.

The distance between two points P = (1,%%,...,-{5) and
A . ‘7_
% Guy s : i pe 2 VZ@DV’*"P°7«)
D= (1,5 1ees is determined bv r = BE2_fY = - .
( Izboi 7 1/0) ~ VZ(PO ’I;;) Fu"’yg
We analyse this expression.
First one checks that
e 2.0 0
gj: ??POW 00----- 0o Ppe 0600-"-0¢C9,
c o4 ) 01 Vo o1 .
2 B . l ' \
r = ' . » ([ X ’( '
5 4 1 ] |
S e 2 0. - -~ 4l ¢ - 4.
Po papr=-- P~ o © C-=~ == 1 Pl C-=memm- 19+
o % -~-- =0 ¢© Popr----puo Go- - ~ —— Yo 0|

and that therefore r2 is relative invariant of the two points
P,Q and the form ¢(Xi)' Next, r2 is homogeneous of degree O in
the coordinates of the points P and 9 but homogeneous of
degree -1 in the coordinates (0,;1,...,1) of the form ¢(xi).
Also r2 has weight -2 (notice, every determinant has weight 2)
and is therefore not an absolute invariant. The numerical
value of r2 has no meaning in projective geometry which is
again not surprising. As a matter of fact, one can measure the
distance between two points only if a unit distance is chosen.

We must consider quotients of invariants of the above type to

obtain absolute homogeneous invariants. If we fix two
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differeht points EO,E1 in A", which will determine the unit

- r{P,2)
r(EO,L1)

distance between the points P and Q, then R(P,Q) belongs by

distance, and consider the fraction R(P,D) as

Caylev's principle to Zuclidean geometry.

The described nrojective treatment of Euclidean geometry using

the quadratic form O-xg + x% + ... + xi, suggested to Cayley

that he considers an arbitraryv non-degenerate real quadratic

and then the angle and the length as in the case of Euclidean
geometry. This is what Klein calls Cavlev's "projective MafB-
bestimmung”. Later, (cfQ[4i]), Klein showed that by this
principle of Cayley a new foundation of the non-Euclidean
geonetries is possible. For simplicity we describe this for the
two-dimensional (real) non—Eucliﬁean geometries. These are

, . oy . . . 2 4
obtained by taking a coordinate system (xo,x1,x2) in P7/C and

. ) . . 2 2 2
then a real non-degenerate quadratic form ¢ = ax_ + Xy + X5

aeR, a L 0. (¢ = 0 is called the absolute quadric of the
geometry.) The non-Buclidean angle ? of two lines in Pz which
are not tangent to @ = 0 is defined by (ght1t2) = ezl? ; where

t1 and t2 denote the tangents on @ = 0 through the intersection
' V 5
roint gn h and (ght1t2) is the cross ratio of the four lines.)

The non-Buclidean distance d of two distinct points P and Q not

+2ikd.
e-._.

on § = 0 is defined by (POALR,) = . where Ays0, are the

S)By this definition also the angle in Euclidean geonmetry can
be obtained. If g,h are two lines in A2 which intersect in P
and i ,i2 are the lines in A2 intersection the infinite line
¥,=0 1n the zeros (0,1,=1) and (0,1, i) of the quadric x5=0,

xﬁ+x§=0, then e2if = (g,h,1q,ip) gives the angle. Compareiﬁi}
p.343. ‘



intersection points of the line PQ with ¢ = 0. k ¥ 0 is a factor
which can be chosen suitably, allowing one to introduce unit
distance . k has to be chosen real and > 0 if a> 0, and purely
imaginary if a<0 to obtain a real distance, at least for
certain points of EZ. If a< O the geometry of J. Bolvai and
N.I. Lobatschewsky is obtained. Klein calls this geometry the
hyperbolic geometry, as opposed to the elliptic ceometry which
corresponds to the case a>0 and which was introduced by
Riemann in his Habilitationsvortrag [471 . This notation of
Klein has nothing to do with the fact that @ = 0 is an ellipse
or hyperbola. The points‘of the 2-dim, hyperbeolic geometry or
the geometry of Bolyai-Lobatschewsky consist of the real points

2

in P”, i.e the points with real coordinates with respect to

the chosen coordinate systen (xo,x1,x2) of Pz, which are in the
interior of § = O. The interior, here, is characterized by the
fact that the tangents to ¢ = 0 are imaginary. The lines of

the hyperbolic geometry consist of the parts of the crdinary
real lines in P2 which are in the interior of $ = 0. Dvery

such line has two "infinite points", the intersection points
with @ = 0. Two lines have angle O if and only if the inter-
section point is on ¢ = 0. Hence, in Bolvyai-Lobatschewski's
geometry,for every line g and every point P4 g there exist
exactly two lines l1 and 12 through P which are parallel to g,

i.e. have angle 0O with

n

The real elliptic 2-dimensional geometrv of Riemann consists cof
. . 2, . "
all real points in P"(with respect to the chosen coordinate

system) and of all real lines. No line of this geometry contains
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an infinite noint, i.e. a point on ¢ = 0 and no two lines have
angle 0. Exercise Ho 19 in[ﬂXJ ; § 33, shows that the 2-~dimen-
sional elliptic geometry is essentially the spherical geometry

on the real 2-sphere.

Historically, the various elementary geometries were developed
at the beginning of the 19th century in the spirit of Euklid
in an axiomatic way (cf.[4§] and the literature there). As
already stated, it was Klein who first realized the connection
between these geometries and that Cayley's principle of
projective measurement gives a foundation for the elementary
geometries. There is still another principle of a group
heoretic nature which allows a foundation of elementary geo-
nmetry within projective geometry. This principle waé stated

v Klein in his Erlanger Prograran.

on

Cayley considered exclusively invariants with respect to all
ﬁrojective transformations but of an extended geometric confi-
guration. Klein states that the various geometries can also be
obtained according to the rule described on page 46 for
projective geometry, if one considers instead certain subgroups
of PCL(n) and the invariant theorv of these subgroups. The
subgroup of a particular geometry consists of those elements

of PGL(n) which map the added object into itself. Affine

. n n y . . . ,
Jeometry in A = P~ I for example, is obtained according
4 ool a <

"

to this princinle by the invariant theoryv of the "affine group

. . . . . n .
which consists of the projective transformation of P mapping

- . . - . . . n n - .
Hoo into itself. Euclidean geometry in A" = P -~ oo 18

obtained via this principle as follows. Consider all real
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. . - . - n C . ;
projective transformations of the P (real with respect to the

o n
n—2 2 2 2 4
i\(‘ 2) = 1% + X5 + L0+ X7 = 0, Xy = o1 (and then also the
[N
hyperplane Hoo = ﬁxo = Qk) inte itself. Thev form the grourn of

similarity transformations. The suzgroun generated Ly thése
similaritvy transformations which are involutions is the
orthogonal group. By the rule of page Af the invarient theorv

of this group gives the Zuclidean geonetrv.

The group which characterizes the non-Zuclidean geometry deter-

)

mined by the quadric

= 0O is the grour of all real

(P(nﬁ‘l)

O invariant.

¢(n"1} -

projective transformations which leaves
The corresponding invariant theorv gives the non-iuclidean

\ trv .7 £ ke r . T T3~ t’ o b T T XNy o l'ivr
geometry. Ve refer to 43| and Pickert's Dbook LAS ; especially
chapter 33 and exercises 16, 17 and 18 of this chapter for nore
details.
In general, Klein's Erlanger Programm states that every subgroun

of PGL(n) determines a geometrv via the corresronding invariant

theory.

always vield the same geometries, as Xlein states in E4ijip.QG§,
is not obvious. It is cléar that the notions éf angle and length
are obtained according to both principles. It is also clear that
every geometric statemént and theorem according to Cavlev's

principle, is one in the sense of Klein. But it is not obvious

that the converse is true and it would be interesting to see
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which part of an elenmentarv geometry according to Klein can be
obtained Ly Cavlevy's method. For the subgroups G of CL(n) for
which both rrincirles are equivalent, the invariant theory of
GL(n) contains tihe invariant theory of G whnich appearé in

connection with the considered geometries and is verv powerful.
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