goooboooogn
0 2740 1976 0 17-36

SOME ERGODIC FROPERTIES OF A COMPLEX

CORTINUED FRACTION ALGORITHM
Tekata Shiokawa (Yokohama)

Recently R. Kaneiwa, J. Tamura and the author of
this paper [ 1] proved, by making_use of a certain kind
of convinued fraction algrithm for ccmplex numbers, a
theorem of Perron on complex Diophantine approximations [2]:
Fo; any complex number © not belonging to the imsginary
guadratic field 9(4/-3) +there exist infinitely manv
integral elements p, q in 0(4/-3) such that

p | 1
S L

If 6= 3(3+ /T + &), where % =3(1 4/=3), the
constant ﬁ/Ti‘ can not be improved.

In this paper we investigate some ergcdic properties
‘of the complex continued fracivicn transfcrmation defined
as the remainders of the algorithm in [1].

1. Definition cf the algorithm

Every complex number 2z can be uniguely written in
the form =z = ud+ VZ; where u and v are real znd w
is the complex conjugate of a complex number w. Ve put

z = [uld + [V]Z-,

where, in the right-hand side, [x] is the largest rational
integer not exceeding a real number x. Note that if g2
is real then [z] becomes the ordinary Gauss's symbol.
Now we define a continued fraction algorithm (*) as

follows;
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1 17
My = - I— [ (n21), % = z2-7127,

L4l

(*) <

1
an = an(z) = [:;I-{:T;} (2’12.1), ao = ao(z) = [Z].

.
\ . n

These procedures terminate, i.e., T2 = G for some n>0,

if and only if 2z Dbelongs to QCVF:B). Hence every com-

plex number 2z can be expanded in the form

1 1 .
z = ag + LRERE 20y, )
, ay a, + Tz

provided "TXz # 0 for all k<n.
Let Z; be the ring of all integers in
Q( 4/ =3) and let Ny be the subset of Z; defined by
N, = {uz+ v%Z; u, v non-negative integers with u+v2>1}.

We pu

(e}
]

{ ug+ vZ; u, v20, usv20 },
{ug +ve; 0<u, v<1},

a1
L]

and
Y=D\{z; z ' eXx}.
Thus the remainder T"z, in the algorithm (*), is the nth

power of the transformation T of X onto itself defined

' 1 1
Tz = —— - [—-——jl (z€X),
V4 V4

which is an extension of the real continued fraction trans-

1 1 |
TY = ——— - l:-———-] (XE[O, 1) ).

by

formation

X X
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By definition we have

243 . \
2] & ——= (z€Y), (2)
: 5

JE
lz[z-;w (z €D \X), (3)

and
{ap(z) 5 zec} =z, ,
{an(z) ;1 z€C} = N, C. DN\X (n21) (4)
wﬁere C 1is the set of all complex numbers.

Every finite continued fraction

whose partial denominators Zyy Boy vrt oy D belong to

-1

Z +
n~1"%n

«.. are different from zero. (Note that if z€D\{ 0}

D\{ 0} is well-defined, since the fractions z;1,

then z '€ DN{ 0} and that if 2, weD\{ O} then z+weD\{0}.)

Let, more precisely, Zys Zososer zné DN\ X. Then

z;1é‘Y\{ 0} and so 'zn_1+z;1e D\ X. Repeating this process

we get
1-l 1
zy + r—w o 4 € D\ X (5)
: z z
and 2 n
1 ' 1 ] 1
+ o 4 € Y\1{0}. (¢)
|Z1 '22 Zn
Let ay, a1,~l. be any sequence of inte~

gers in Q(/-3) such that a, € Ng (n21). Every finite

continued fraction

()
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has a canonical representation pn/qn (pn, G, € Zg )

called nth approximant, in the form of an crdinary frac-
tion. ZEspecially if the sequence 8qy Bypc-- is given

by the algorithm (*) we call the fraction pn/qn the nth
approximant of z. Thus from the general theory of finite
continued fractions we have the following formulae (7)=(10):

(For the proofs see [3].)

P, = 2P 4 +* Py oy Gy = 8,9 1+ O o (n21), (7)
1 1 1 Q. _
l N i+ + ‘ = —n=] (n>1), (8)
{ 2y I 4n-1 ‘ a4 9n
-1
P4y 4 = Ppoqly = (=1)" (n 2 0), (9)

where p_, =1, q_1'= 0, Py = ags Gy = 1. Further if

pn/q_n is the nth approximant of 2, then

P, 1

Tn+1 An-1 )—1

_ n
= (-1) (an+1 + 7 + == (10)
a, a ay

LEMMA 1. (R. Kaneiwa, I. Shiokawa and J. Tamura [2])
Let ags Bqs - be any infinite sequences of

integers in Q{(/=3) such that a €N {n>1) and let

pn/qn be the nth approximant. Then we have
‘qn 500 as n->o0.

For completeness we prove this lemma,
Proof. Suppose, on the contrary, that gq H 00 as
n 2¢O So we can choose an infinite subsequence {qn }m
_ A 31321
such that an '< M for all nx21, where M is a con-
J

stant independent of j. But from (2) and (6) we have



21

1 ‘ 2/3
=1 < af\i+
-q,, ~ 3
and so
2/3
] < ol <
J 3

where the right-hand side is also independent of j. It

follows from these inequalities that p/ /qn = P, /qn
J J k Tk

for some J and k with Jj< k, since the ring of all
integers in 0(/-3) 1is discrete. Hence we have

L

a
n.+1
J

vhich contradicts (7).

LEMMA 2, (ibid.) Let =2z ©be any complex number not
belonging to 0Q(/=3) and let p, /a9, be its nth approxi-
mant. Then we have ‘

P
z = lim 1 .
n-»00 qn

Proof. By (10) as well as (3), (5), (6), (8) we have
P 2/3 _
SR A
a, 3 :

which tend to zero as n -» o0,

ILEMMA 3. (ibid.) With the same notations as in
Lemma 1, the nth approximant pn/qn converges to some
complex number which belongs to bO+Y.

Proof. Similar to that of Lemma 2.

Now, by means of Lemma 2, every complex number g

can be expanded in a regular continued fraction whose
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artial denominators a_(z) are integers in Q{/-3);
P 0 g /

\ 1 l 1 l
z = ag(z) + ia (z) - Ia (z) Tt
1 2
This complex ccntinued fraction expansion is a natural
extension of the ordinary real one, since both algorithms
coincide when 2z 1is real.
2. Admissible sequences and fundamental cells
We put
A(n) = {a,l(z)«'- an(z) : zeX} (1< n <o0)

Seguences belonging to A(n) {(1<n <0c0) will be called
admissible. {(Note that Lemma 3 suggests the existance
of non-admissible sequences.) By definition if afs‘aneA(n)

1 . (n-1) (n-1) P (00}
then a1e.an_1e A and a2 ane A . It 248, eA
then ay--a € A(n) for all n=21., And the conjugate
E1§2... of some (finite or infinite) admissible sequence

is also admissible.
For any a2 € A(n) we define
Xa1.--an= {zex ; a (2) = a, 1<k<n } ,

which will be called a fundamental cell of rank n. Thus

we have
X = U X .
aj.--a € A(n) aqr0t 8y
where X N X =¢ 1if # b for some k%
R by.ee by ¢ e T %

with 1<k <n ; i.e. the set of all fundamental cells of
rank n form a partition of X. Besides, for any fixed

infinite admissible .sequence ajay e we find

XDXa1 Do D Xa1”
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and (by Lemma 2)

diam (Xa . a ) > o0 as n >N .

1 n
Hence every Lebesgue measurable subset of X may be ap-
proximated with any accuracy by finite unions of mutually

disjoint fundamental cells.

For any given aye-- anE.A(n) we difine a function

of 2z by
1 1 ] 1
+

qra1...an(z) = a oo +i

or (replacing a, in (7) vy an+z)

. + D 1Z

9p ¥ p-1?
Because of the formula (9) the linear transformation

Iya ... 5 has the inverse
1 n
- P, - Q. 2z
o0 = =225 gm0,
1 n =Py .1 + Q12 1 n

But the equality (1) can be rewitten in the form
z = ‘,’a1---a (T%2)  (zeX).
n

Hence for any fixed af-~zaleA(n) the nth power of T

restricted on the cell Xa a is identical with the
1°""“n
inverse of H
Vaon
-1
™z = ( )T (8)  (zex ). (11)
4’a1’ a, ag.--a,
Especially we have for any a,...a € A\n)
= n \ |
Xa,‘...an \Pa1---an(T XaQ»--an" (12)
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Now we need some notations ¢ Put

V=3 V3
Uy = {zeX; |2+ > b,
3 3
U, = {zeX; Im(z) >0},

jan]
]

3= {zeX; ZelUy, Im(z)>0},
and define
| Uy ={z;zeu,} (3=1,2 3.

Further we set UO = X for notational convenience.

- -1
Considering the reciprocals Uj1 ={z; 2 '€ Uj}

we obtain (see Fig. 1)
- Loga
X = \P;(U1)U\P§.w_1) U ( Y V(%) ),

a
a3, %

(13.0)

3 |
Up= BOUDURUDUCUT (00U U 4,00,

aeNz ,a#%
Im{a)¢0

U YU (U, nu ¢ U o0,
and

Ugs qu(Ug).u ﬁﬂ’k‘”-ﬁu‘%k(“?) ).

(13.1)

(13.2)

(13.3)

Taking the complex conjugate of (13.1)~(13.3) we have

also the same relations for U_,, U, and U_

we assign (13.-1), (13.-2) and (13.-3) resp.

3 to which



Fig.
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In any case Uj can be written in the form

o
o

Uj = Le)mj 'LPa(Uk) (14)

where Mj is a subsei of NC and k {(-3<%x<3) are
chosen uniquely according as Jj and a. In addition,
we note that

Va NPy () = ¢ (15)

. whenever a # b (a, bG'Ng).
LEMMA 4. Tet nx1 and let a,---a € A(n). Then

we have

Xa veva o "’ja1...a (UJ) (16)

and so

X = U, 1
a,!.-- n J ( 7)
for some j (-3¢ j<3).
Proof. By induction on =n. First we prove (16).
If n=1 (16) follows from (i13.0). Suppose that (16)

hold for all a1~--an6 A(n). Then we have for any

(n+1)
CORRE n+1é A
X = {zex, ..., ;3 a ,(z)=2a/(1z) =a
a,. an+1 a1 an' n+1 1 n+1}
= {Yar'-a (w); wer, a1(w) = 84 }
n
= ( () (by (14),(15) )
1l’ra1---an 4ran+1 kK’
= . (U)
qfa1'“ Bpe1 K ’
where j 1is defined by Uj = TnXa ...5 @and k chosen

n n
uniquely in (14). Now (17) follows from (12) and (16).

1C
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Let E Dbe any subset of X. Then by Lemma 4 we have

for any &y ané A(n)

?PE = {zeX; TVz¢€E }
= (){zexaf”a ;TnzeE[\Uj}
n n
a1--u aneA
= U . (ENUY), U= (18)
(n)qfa1 %n 37l 8qtct 8y

31.--an6A

3. Estimates of the Lebesgue measure
Let m Dbe the Lebesgue measure on the complex plane
and let B be the v-field of all measurable subsets of Z.

Then we have for any a,:- aneA(n) and E € B

n( P, ..o () = g

But using (9) we find

Ya,.ooa () = (D7 (g + q,_12)7°

/ I3
Ilra1. . an(Z)l QdXdy, z=xX+1iy. (19)

n
and so
/ - Q,_ -4
\];311”‘a (2)| 2 = lqni 44y, o=t -4 (20)
n qn
Hence we have
=4 (4 /- 2 4
574 < oy ]L;far.,_an(z)l <3 (21)
and ’
- - - / .
57 < a7 ,(L}[a:...an) (=) 2 ¢ 3%, (22)
since (from (2), (3), (6), (8) )
V3 /3
3= ¢ §.14qnz$1+/_—<3.
2 q, 3

, -2
Taking account of the fact that 3 ° m(Uj) 1

(=3¢ 3 €£3) we have from (19) and (21)

11
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3—6 < !qnld' HI(Xa s s } < 34 (31... ane A(n)) (23>

1 “n
“We write
s(n) = z q|™*
a.---a_eam ! nl
1 n
Then for any nz2z1 we have
375 ¢ s(n) < 3° (24)

Indeed it follows from (23) that
3t sm) > 2 om(x, ., ) =m(x) >3
- A(n) 1 n

and.

576 S(n) < m(X) < 1.

(n)

By means of Lemma 4 the set A of all admissible

sequences can naturally be divided into seven subsets ;

’

we put

(n) _
Aj = { 2 a---a

then we have

NEV N AN CON
j==3 ¢

By (13.3) (-3<3j<3) we have for any n21 the follow-
ing relations;

Aén) = { ai‘“ anG-A(n); a9 8 € Aén—1)’ ay 7 513

or a,.r-a € Agn_1), a, #3 Im(a )< 0 ;
-1

or a,--a _4¢& AE? ), a, #¢, Im(a )20 ;

or a,--ra, € Agn-1), a, £2 , Im(an)< 0 ;

or a, a _q& Agg-1), a_ #¢, Im(an)>'0 1 (25.0)
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(1) _ fa e @) W(0=1) 4 (m=1) (o)
Al = {apra e At e e L€AY Uazim 7 Uaz™/,
a =&} (25.1)
(n) _ g (n). (n-1 -1 =
A2 = { a1---an6 A ) a1---an_1&A__1 ) A%n ), an~§élq;
or a,- - an_1e A£2"1) A£§—1),
a,€N } (25.2)
(n) _ , (n). (n=1)1),(n-1)
A3 = {a anE A ? a1-~-an_1€A_1 kJA3 ’
a, =% 3 (25.3)
and
AS?) = { ay-a; a1---arl&A§n)} (j=1,2,3) (25.-3)
where N 1is the set of all positive integers.
We write
LA LR I CEEE R
n
a, ane Aj
Thus we have
Sj(n) =s_j(n)  (-3<3<3). (26)
and v
3
S(n) = 2 s.(n). (27)
j==3 ¢
LEMMA 5. For any n23 we have
s5(n) > 3717 (-3¢j<3)
Proof. From (7) and the inequality
-1 . Q-2
57T | < [on + 22 <5 o, |
9p-1
we find for any ‘a1---ane.A(n)
-1
5 ol [onet] < 3] <3 ol o] -9
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By (25.0), (26) and (28) we have

3 Sp(n) > ' |~ 2 lqn~1‘”4
aeN\fs a eA(n—1)
n-1 -0
. B I"“' > || ™
aGNAK] X (n-1) | o1
 Im(a)< 0 aqran 4 €Ay
+ 2 2 Ial—4 zz lq [’4
a € NAGE) (n-1) | 1
Im(a)< O Ay ap 1€ A

> Sy(n-1) + 25, (n-1) + 2 |3+ 1™ s,(n-1)
> 3_2(80(11—-1) + 81(1'1—1) + Sz(n—ﬂ).
Hence we have

So(n) > 372(85(n=1) + 8,(n-1)

+

5,(n-1)).
In the same way we obtain

51(11) > 3_1(So(n~1) + 81(n—1) * Sz(n-1)),

+

S,(n) > 377(5,(n=1) + 5,(n=1) + 85(n-1)),
and
S5(n) > 371(5,(n=1) + 85(n-1))

(using (25.1) - (25.3).) It follows from these inequali=-
ties with (24), (26), (27) that

S(n) > 3‘6é§%sj(n—2) > 37 7s(n) > 3712,

Similary we have for any nx3

Sj(n) > 3712

4. Invariant measure and ergodicity
THEOREM 1. Let E be any measurable subset of X
such that T 'E = E. Then m(E) = 0 or 1.
Proof. We assume that m(E)> 0. By (17) and (18)

we find for any a1---ané‘A(n)
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=

2
ta
n

PR b AR

_ mn
llfaf"an(E NUy), Uy = T

aq " 8y
From this as well as (19), (21), and (23) we have
-4 -4 :
m(E N Xar“an) 237 e, | nE N 0,)
2358 m(x, . ,) min{mn(ENUg), m(ENT_5}. (29
4 n
But (13.3) and (18) implies that
_ -1
ENUy = TTENU; DY, (ENT)V PENT,).
Beside for any measurable subset F of U2 we have by
(19) and (20)
m( \}"1(3‘)) = Jfl? + zl_4dxdy
F
> JJ' |E+ 1+ zl"“*dxdy = m(\P;;-H(F)).
F
Hence
= n(fg, (@) > 374 [T+ 1) = 57fm). (50)
Similary we have
n(E NU_5) 2 3 °n(E) (31)
By (29), (30) and (31) the inequality
m(ENF) 2 37 4n(E)m(F). | o (32)

hold for all fundamental cell F, and so for any measur-
able set F in X. Thus, putting F = X\E in (32),
we have
m(E)m(X\E) = O
which implies m(E) = 1.
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THEOREM 2. There exists an unique, T-invariant
probability measure f{ egulvalent to Lebpesgue measure

such that the inequalities

(E) (%)
15 12 < ME) < 310 —Iﬁ«—-——-—, (33)
m(X) m(X)

hold for all Ee¢TB.
Proof. To prove the existance it is enough to show

that the inequalities

3—15m(E) < m(1T"E) < 31Om(E), (n20) - (34)
hold for all Ee®B. (see F. Schweiger [51§6-%7). By (18)

(19), (21) and (24) we have

(TPE) < 2 (B
n'( k A(n)m(qra1...an( ))

< 3%m(B)s(n) < 3"%(E)
To prove the left-hand side inequalities in (34), we
suppose fiast that E C U3. Then, by (18), (19), (21) and

Lemma 5, we have

3
1R -.n"(‘ > i
m(TVE) 2 jgo %n)m(lka1...an(E))

A}
J

; 3 -
> 374m(®) S s,(n) > 37 °n(E),
j=0 4

as required. Similary for any E CIUZ\.U3

» |
77IE) = > 37 15p(E).
m(T™E) jgo En)m(¢a1_..an(E)) > 37 °m(E)

Besides the left-hand side of the inegualities (34)

[ N
wn

also true for any subset E of U, or U, U—3'

a result (34) holds for any subset E of X, since
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E=(EN U.j.) V(EN (UQ\U3)) V(ENT_,) U (E ﬂ(U_z\U_B)L
By Theorem 1 the T-invariant probability measure is
uniquely given by the limit
1 1 n=1

U(E) = lim 2 m(1™"E), EeB. (35)
m{¥) ns00 n k=0

(see also F. Schweiger [5].) And so (33) follows from
(34) and (35).
‘ THEOREM 3. T 1is ergodic with respect to /LA ; 1.e.
for any fe L1(X) we have
1 n-i

lm — 2 £(12) = | £(2)ap, a.e.
n>x n .k=0 _ ¥

Proof. Follows from Theorem 1, 2 and Birkhoff's
individual ergodic theorem,
As an z2pplication of Theorem 3, we have
1
lim (a,(2) P an(z))n = &% , 8.8,

n-» o0

where

o(=flog a,(z) du .
x T

(Note that f(z) = log a1(z)e L1(X), since the series
S 2% 10g a is convergent. )
a€ N
g
5. Exactness
A measure-preserving transformaticn T  on a normal-
ized measure space (X,ZR,/A) is said to be exact if
0 |
N ™8 =({4 X},
n=0
or equivalently, if for every set E of positive measure with

the measurable images TE, TZE, ees The relation
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1im /A(TnE) = 1 (36)
n > 0o

holds. (see V.A. Rohlin [41)
THEOREM 4. The transformation T is exact.
The proof requires the following
LEMMA 6. Let €>0 and let E be any measurable
set such that
/4(Uj\ E) < &

for some j {(-3<3j<3). Then

Proof of Lemma 6. It is clearly encugh to consider
only the case J = + 3. We may assume further that J = 3,
since the folleowing arguments are available for the con-
jugate case j = =3. PFirst, by (13.3), we note that

Y (U ) U ¥, () C Uy, (37)
But, by (33) and .(22) with a = 1, we have

(24, (TN B) < 3% () w2 (Y, (W) N E))

}A l‘l!r‘i'd—z >~ 44 \ 1\ _2 B ,

< 30 n( Y (U,ONE) £ 329wl (U,NE). (38)

= Y1t < 3T UYL IN B 8
In the same way, (using (22) with a, =2 +1)

(25,1 (UINED) € 32T (s, (0,)NE)) (39)

lu 'Y;H 2 = / z+1'72 *
Hence it follows from (37), (3%8), and (39) that

MY (U U g 4 (U)INE) )

31 ,
< s T r )

<33 pu\E) ¢ 3 e (40)
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Therefore, by (37), (40) and (13.%), we obtain
MEE) 2 pC R (U ) U5, 1 (U))NE) )
2 (A2 (U U, 1 (U,0)) = AC2CCY; (U0 U, 4 (U))\ B))
>1 -3¢,
Proof of Theorem 3. We prove (3€). Let E€B given
arbitrary. (Note that, by the definition of 1T, EE€[B if
and only if TE€E{® .) Let € > 0. Then there exists a

- fundamental interval F = Xa a such that
1.0. n .

m(F\E) < 3 °C¢ n(P). (41)
Otherwise, the inequality

m(F\E) 2 37°%¢ n(r)
holds for all fundamental interval F, and so it holds
also for arbitrary measurable set F. Putting F = E
we have mM(F) = 0 ; a contradiction.

Now by Lemma 4, (33), (11), (22), (23) and (41) .
P (2F\ 27E) < (T (F\E))
<3"Mm(e(@\E)) = 37 |q_|*m(F\E)

<3 m(P) m(r\E) < 37¢ (42)
Noticing that p = Uj for some j by Lemma 4, we have
from (42) and Lemma 6

M(™TE) > 1 - €.

Since }A(E), F(TE), /A(TnE), .+«s is increasing, the
relation (36) is proved.

As a geheral property of exact transformations (see
V.A. Rohlin [41) we have

Corollary. The transformation T is mixing of all

degrees. In particular T 1is strongly mixing; i.e. for



any E, Fe@ we have
lim w(T"ENF) = PE) (T
n =0’
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