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SOLENOIDBS IN CENERIC HAMILTONIAN DYNAMICS 1

Seeking sclenoids
elliptic orbits whirl fog
no  Sirm tori-i

1. Recurrence in Hamiltonian Dynamics. A Hamiltonian dynamical system ig

2n . .
defined in R by the differential eguations

at _am o Yioaw
t ] ,““‘ i = 3 e 31ty
d ayi dt axl
or in matrix notation
X H
1) =g % s
y H
y
0 E\
where J = Il) is a standard skew-symmetric 2nx2n matrix with blocks
-E_ O
n

of unit matrices En’ and the gradient dHd = (H , H ) has been transvosed as
X b
. . .. . ) n n . o
a column vactor. The given Hamiltonian functiom H : R SR — R dis suitably
. . . In . . . n n .
differentiable in the state space R which is written R &R  to emphasize

. . 1 n
the use of the canonical coordinates (x7, ..., x , NIRRT yn).

A change of local coordinates (x, y) — (q, p) in B? %)Rﬁ preserves
the form of the Hamiltomian system 1), with H(q, p) = H(x{(q, p), y(q, p))

) . . . . i 3 (4, P) .
as Hamiltonian function,provided the Jacobian matrix T =-§%%’ z) each
“>y

point satisfies the identity TJT' = J. 1In this case T belongs to the real

symplectic group Sp(2u, R), (g, p) are called canonical coordinates in
n . .0 - . . .
B SR, and the map (x, y) —>(q, p) 1is symplectic, see t1,5 1.
The recurrent trajectories of such dynamical systems have been studizd
intensively siuce the age of Lagrange and Hamilton. At first attention was
restricted to critical points and periodic orbits, but recent theory deals with

almost periodic orbits that are dense in minimal tori.
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In this paper we define mew types of recurrent trajectories that £ill

minimal solenoids. OQur approach to these solenoidal structures follows a

2n~2

. . .. 1
geometric path through a progression of massive torl—ll (7T = S xS ),

centered oun elliptic orbits that wind ever higher. Furthermore, we shall show
that the existence of such minimal solenoids is a typical feature that occurs

for generic Hamiltonian dyramical systems.

We recall the technical definition of a solenoid Z:a, as specified by

a sequence of positive integers a = (ao, aj;s 2, a3, ...), each a, 2> 2.
3
Consider a sequence of circles Sl =h{z et : 1z} = l} , with maps of degree
a,
aj, say z —»> z J,
%0 1.1 1.2 1

Then the inverse or projective limit is the solenoid
- . 1
Za = 112__{8 . (aj)} .

In more explicit notation jaa is the subset of the countable Cartesian

prod&ct ST x Slx Sl¥ tte consisting of sequences (zo, zl, 22’ 23, ...) for

which Zjil = zj, j=0,1,2,3,... . It is known [ 3,4,7{thal each such
solenoid is a topological curve, that is, Eja is a compact, connected,
separable metric space of l-dimension; but :Ea is not locally connacted.
There are noncountably'many topological types of such solenoids, but we have

some choice in the comstruction of any particular solenoid E:a' In facc,

solenoids ifa and E:b are topologically homeomorphic provided:

. r
for every prime power p ;

-

p divides some product (aoal-'°ak) if and only if
pr divides some product (bObl---bz).

We shall prove the existence of solenoidal minimal sets, for generic

1) See haiku abhove.
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Hamiltonian systems on a compact gvmplectic manifold M7, by considecring
R o . R . L. - . , k2
a limit of long period elliptic orbits, as explained below. The space 7l
. . . ) k+2 . 2n ~ o ]
of Hamiltonians is the set of all real C —functions on M (for any fixed

k+2 k+2

integer k X 0). We impose the C ~—topology on % 7, consistent with a

. . R . k+2 _
complete metric, and consider generic (residual) subsets of i . We can

now state our principal theorem, whose proof appears later.

k+2
Theorem 1. Let }@i

be the space of Hamiltonians on a compact symplectic

) 2n . i A
panifqld M (n22 and any fixed integer kz4)Then there exists a generic set
k+2 . . . ; s
@q C:Qi such that: for each Hamiltounian HE 2451, and each solencid
Ls, Sutd ; itk 5 Hia ealdl
—

P -there is a minimal set of H that is homeomorphic to 2
g’ T : - nomeo :

a

2. Local Theory of Hamiltonian Dynamical Systems. Consider a Hamiltonian

1 k+
function H : ﬁgléaiﬁn"—%iR in class C 2 (fixed integer k > 0), and the

corresponding Hamiltouian differential system in the (x, y) canonical co-

ordinates
x\ H
1) =J *1 .
v H
. i
Let Py be a critical point (where dH = 0) of 1). Say Py = (0, 0), and

take H(O, 0) = 0, so that near the origin we have

Hix, v)

i
N |
N
"
«
N~
w2
+

y
for a real symmetric matrix S = S'. The Hamiltonian differential system is

then

where the Hamiltonian matrix A = JS, in the Lie algebra sp(2n, R) of



( o] 3 ha T ool ey ( n e - - 5 ey T .
Sp(2n, ®), has the eigenvalues \R}j AZ’ ’A‘n’ Al’ Moo > ktg

Definition. The critical point Py> and the Hamiltonian matrix A, are
elliptic in case all the eigenvalues are pure imaginary, that is, Re Aj = 0

i =1, ...,n. Further po, and A, are generic elliptic in case 2 A

1’2
"Ax1 (say with Im A’j > 0) are linearly independent over the rational

field.

Next let Y be a periodic orbit of the Hamiltonian differential system
1), and take a transversal (2n-1)-section 2, through some point Py gy .

The Poincaré map P around X maps ZS (or some neighborhood of po e2)

into s by following the trajectories of 1) once aroﬁnd a tube encircling
Y . Choose local canonical coordinates (%, ¥) about p. in R & R" so

— 10 -
that 2, is defined by x = 0, the energy levels H = h are vy = h,

and the Hamiltonian vector field is just ;ai' near Py Then :Z admits the

X

. . -2 S — .
parameter—~symplectic coordinates (h, X, ..., X , Vos »ovs yn) as a neighbor-

hood of the origin in the parameter-symplectic space R.X(Rn—l<$ Rn”l), see

[¢] for precise definitions and details.

In this situation the Poincaré map
P:5 —Rx ® TR,
- 1s a parameter-symplectic map, that is
§1-5'§l = h  (each energy level h conserved)

and on each level §l = h we have a symplectic map

B =j = .
: (G —> (X, Y.) £ = 2,3,... .
ot (@, 5) > @, F) for j=23,...m

. - . . Y z
The map P gives all the information of the Poincarée map around ¥ , aund we

(k) (k)
Ph Ph

h

shall be interested in the k-jet at the origin Py Each such

specifies an element of Jk(Zn—l), which is the space of all k-jets of



. . : R n-1 La-
parameter~symplect1c maps around a fixed origin in R x (R AR ). In

particular the I-jet Pél) at p, 1is specified by a symplectic matrix
1.9 X
o8, ) 20-2 ,
0 = 32%’ ;; & Sp(2n-2, R) and a vector h 2R 072 The eigeavalues
> Iy —_—

Y

dp

>

of dPO are the (nontrivial) characteristic multipliers (;Lq,/{q,...,/in
s 2

-1 -1 -1
/"Lz :/LB > O-":/"Ln )'

Definition. The periodic orbit )Y is elliptic in case all characteristic

multipliers have modulus of onme, that is, | a. | =1 [ 3 =2,...,0. In this
J

2miw,

case each /A‘ = e J

i defines a real frequency w, (mod 1).
. J

A periodic orbit y is non-degenerate in case all pj # 1 for-3,2,3,...,0.
Then y lies in a geometric 2-cylinder or band of pericdic orbits vy(h), with
least period varying differentiably with h. If vy is an ellintic orhit wizh
distinct frequencies wz,...,wn, then all y{h) are elliptic, and the distinct
frequencies ws(h) vary differentiabif and none vanishes (providad vy(h) is
sultably restricted). At this stage we do not specify any Ffurther nocions

of genericity of periodic orbits., -

3. Generic Hamiltonian Dynamics on Symplectic Manifolds. A symplectic manifold

2n . . s <] .
M is a differentiable 2n-manifold (connected, separable, metrizable C -mani-~

fold without boundary), together with a C®-atlas of symplectic charts or local
. . . 2n ‘ . R -
canonical coordinates (x, y) covering M°, and having coordinate transfor-

mation Jacobians T lying pointwise in the symplectic grbup Sp{2n, R). For

each Hamiltonian‘function H : Mzn-—ﬁaR in Ck+2 write the local vector
field or differential system

: "
1) )=

y iy

in each canonical coordinate chart (x, y). Since T & Sp(2n, R) it is im-

mediate that any two such local vector fields coincide on the intersection of

1.

symplectic charts, and thus a global Hamiltonian vector field X or glabal

. , 2n
Hamiltonian differential system is defined on M .

ik
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n -
For the =ame reason, the symplectic 2-form \QiéZ§xJ A dyj" in each
‘"‘:-l
. . . o= . . .
symplectic chart (%, y). is a globally defined C -form that is nonsingular

p

(det J = +1), and closed (dL = 0) everywhere on MZn' Using the symplectic
form 8L we introduce a duality between covariant and contravariant vectors

at each point of Mzn, Tn particular, a Hamiltonian function H has the
gradient l-form dH, and thus the contravariant or tangent vector XH (also
written dH#3 ’defined by <(Xﬁ, L7 = dH. In each symplectic chart (x, )

the Hamiltonian vector field dd” is expressed by the Bamiltonian differential
system 1) .

We assume known the basic theory [1,5 ] bf global Hamiltonian differential
systems au¥  on symplectic manifolds Mzn" In particular, near each critical
point or periodic orbit of ag®  the local analysis of section 2 ahove is
valid, since those constructions were independent of the cheoice of local

. . 2 .
canonical coordinate chart. In the classical case of mechanics M is the

cotangent bundle of the positional configuration manifold, but we shall restrict

. 2n . - e IHYL -
attention to the case when M (n>=2Y s compac’if’ {for rampie 1 ). i ben each

e

Hamiltonian differential system has trajectories (solution or integral curves)

defined for all times t € R.

. k+2 ; , k+2
Definition. Let 74 be the set of all real functions of class C

. . . 2 .
(any fixed integer k 2 0) on a compact symplectic manifold M " we impose

k+2
the Ck —topology on ?$kf2'

k+ k+ : . .
The € z—topology on ) 2 can be defined by a complete metric, with

norm on F g }%F+2

k+2

S 2
Well= >, Io7F| .
%? =0 X

}

Here DE is any partial devivative of total ovrder |} {| . Further the local

£ —
NOoTrms }D F}x are computed in wd , Wwhere {Wk} is a finite open covering




.20 —
of M and each compact W lies in one coordinate chart wherein the

>4
derivatives are computed. A change of the covering {W&} introduces ar
. . + . k+2
equivalent norm, and hence the Ck 2—topology is well-defined on '?L 7., Note

k+2 .
that ?L is a Baire space — each countable intersection of open-dense

+
subsets is dense in 7¢k 2.

~n k+
Definition. A subset '79C-ﬁpk 2 (or the logical property defining the set

) 1is generic, or residual, in case K2  contains a countable intersection

k+2
of open~dense subsets of - .

In an earlier paper [ 5 | the authors prove that the following set é&o
is generic in '}#k 2 (for every k > 0):
. k+2
_430. all He ¥ such that )
(i) H has a unique point at which it assumes its minimum on M n) and
(ii) at the unique minimum point H has a generic elliptic critical
point.
Takens [ 9 ] has given a procedure for constructing generic subsets
kr2 | . - , ’ . .
of 7¢.' in terms of the k-jets of the Poincaré maps around periodic orbits.

We mext paraphrase a particular result of his general theory.

k
Proposition. Let Q be an intrinsic, analytic subset of the jet space J(2n-~1),
fixed integer k » O.
N L ) K42
If codim Q = 1, then there exists a generic set ’ZQ o }* such that:
each H E;’EQ has at most a countable number of periodic orbits whose k-jets
have the property Q.

If codim Q > 2, then each H g Tk} has no periodic orbit whose k-jet

has the property Q.
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crawuie 1. Cousider Q. = JE(2a-1) defined by the discriminaunt of the

1

; e 1 Coi T - der crlE e e da d
characteriscic polyanomial F(u) = det l(dPO -ul) of the Jacoblian matrix VPO.

damely, ¢, is the set specified by the condition: discrim (F) = C. Then

1

B K ) K1 - P

coedim @, = LinJ (2n~1), for every k = 1, and hence there exists a generll

A k\“"‘z . o o a1 . 4 < - d‘C

set T < such that: H € T, has only a countable number of periodil
Ql i

orbits possessing repeated (nontrivial) multipliers. In particular, H has only

a countable number of degenerate periodic orbits. Since this result was obtained

earlier by Robinson [8], we shall denote the generic set TQ by 6?.
1

= 1 . . .
Spled Tn this same spirit define a set QZ C J (2n-1) by the copdition F(1) = O,

F'(1)

il

0, F'(1) =0, F'"(1) = 0. Then M =+l 1is a characteristic multi-
plier of multiplicity 4, that is, +1 is a nontrivial characteristic multi-

plier of multiplicity > 2. 1In this case codim Q2 2 2 and so each H é”FQ
2

has no periodic orbit of this higher degeneracy. In particular, amoung the

elliptic orbits of H no two frequencies Vo Tty W are simultaneously zero.
n

4. Generic Constructions for Minimal Solenoids. Fix a compact symplectic

manifold M (n 2 2) and considar the Baire space ?%k+2 (any fixed integer

N . . . 2n . .
k > 0) of Hamiltonian functions on M, We shall conmstruct the required generic

set 5%% within ?frl‘go (so, k 2 1). Recall that the intersection of a finite

or countable number of generic sets is still generic.

, . . ak+2 C ..
Lemma 1. Fach Hamiltonian H € 7@{LECﬂ~ (for kK 2 1) has an elliptic patiodic
LS A ,

orbit y, with distinct frequenciss WyseoesW s and vy lies within any prescribad

neighborhood of the point wher= H achieves its minimum.

Proof

Since H ¢ jgo the minimum, say H(po) = 0, occurs at a generic elliptic
critical point. By the theorem of Liapunov, as modified for the differentiable
case [1], there are n families of periodic orbits concentric about p,- Take vy

to b= any such Liapunov orbit with small energy H = h(. The further details
- )

or b

0L tnz wroof will appear in the complated paper in a later publication.



Hote tnat v is a nondegenerate elliptic p2riodic . orbit, and so liss
in a geometric 2-cylinder or band of elliptic orbits y(h), with Y(ho) = v,
Furthermore, the corresponding frequencies wz(h),..,,wn(h) are distinct
" for each h near ho’ and these vary differentiably. These properties will
be relevant when we impose the further generic restrictions ,31 and ,% 5

froy o in 32
in{y - (k.2 2), by means of Takens polynomials in J (2n-=1).

F(r)

The characteristic polynomial (1) of the r-th power

£ (0 , (07

(1) =0 (1) =0,

(dPO)r satisfies the conditions
.\ 3T £ "t
%y =0, P9 = 0.
AN 9@
gl - m /g]_ .
r=1

Than H € ;%l has no elliptic periodic orbit that has two rational

characteristic frequenciss.
d 1.
}Z : — (Trace P( )) = 0.
w2 d h

Then each elliptic orbit Yy of H ¢ ;&q, with distinct characteristic
S
frequencies WoseeesW s has a rational frequency — or else Yy can be arbitrarily
closely approximated within the band y(h) by some y' with a rational freaquency.

Ay k2 . S e . .
< 7¥ (for k 2 2) have an elliptic orbit v with

Lemma 2. Let H ¢ /%i n ;52

distinct characteristic frequencies WoseeesW o Then Y, or some arbitrarily

nearby Yy' within the band y(h), has exactly ome frequency, say w,, that is
&L

rational and all the other Wasees W ALE irrational.
Jein ) 1
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-

oy ) A g s k+2 o .

The last generic condition 3 S (for k 2 4) is imposed by a
o . NI { .
Takens polynomial in J (2n-1). In order to understand 3 consider the
R - - . s’ . . . .
Birkhoff normal form [2] of thne Poincare map P around an elliptic periodic
orbit vy of H. Assume that the fraquencies w,,...,w_ of Yy are distinct, and

Z 1

furthermore they are "linearly independent over small integers', see [2,5,6].

. . . . o i . .
Then there exist real canonical coordinates (x ,yi) i=2,...,n in terms of

. . 1 i
which P : (x ’yi) - (X ,Yi) has the form:
i i . ~1
X = x cos 2T W, -y, sin 27 . + X (x,¥)
i i i
Y i")TrN+ 021TN+§()
., = % sin 21 w, . Cos W, .
i i 7Yy i i
n
Here Wi =y + C;. “j + ... are real polynomials in the symplectic polar Tadj;
A}
j=2
i 2 2
= XKD ) t e desres of o
Li.i = + . The degree of wi(u) can be pre=-selected, and if
2

L~ . . 1 4
we require w, to be polynomials of degree 2, then the remainder terms X, Yi

ft

are of order 5 as |x| + |y| ~ 0. The determinant A = det (Ci')) is a symplectic

invariant of the orbit vy in H.

_ da
}33. b =0 and === 0.

Then each appropriate elliptic orbit v of H ¢ 33 will have a nonzero
"twist coefficient', as explained later. A proof that the conditions defining
3

A ., are described by intrinsic analytic subsets of J (2n-1) will be given in

the final complete paper.

Gt
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o k+2 . ) o .
Definition. In ’31 (each fixed integer k > 4) define the generic set

bl i
7 =’:§‘Zn n A o A n%.
7722 g(:a_/]_ ' 2 3

The proof of our.principle theorem 1, as stated in section 1 above,
will now follow from a lemma concerning the existence of a periodic orbit Yi

with a high encircling multiplicity q around a given periodic orbit y. That

(2

is Yl s a closed curve homotopic to q times Yy, within a tubular neighborhood

about v.

kt+2 ~ o
Lemma 3. Let H € 9%% c§¥ - (any fixed integer k 2 4) have an elliptic

periodic orbit Yy with distinct characteristic frequencies wz,,..,wﬂ. Let
n®-

e SZn—-Z

x s% pe a rori-i through which passes a tubular neighborhood of v,

and let 4 8, be primes = 2,

Then there exists a periodic oxrbit v, of H such that:

i

i) Y1 lies inside 0l and eacireles this tube exactly g times befor

¢

compieting its least period.

a

Here g can be required to have the factorization g = 9@y o2

for some

suitably large integer a =2 1, and a = 1 is permissible if 5 is suitably

large.

ii) Yy is an elliptic orbit with distinct characteristic frequencies.

Proof

Since y is nondegenerate, it is embedded in a 2-band of periodic orbits
Y(h), and we choose the energy constant so Y = Y{(0). From lemma 2 we can
assume that W2 is ration’al‘andrw?),...,wn are all irrational. In fact, usiag
dw
E:: (0) 790, we can assume that W, = P/q for any integers p,q provided that .

p/q lies in 2 svitabis prescribed real interval. But then it is easy to choose

(p,q) = 1 with q of the required form. (For instance, suppose qo =2, 3 =3
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and ?;/Zde lies within the allowed real interval, for some large a z 1.

Take 1 odd and choose p = 18 if 3 does not divide s otherwise, choose
The first part of the proof of this lemma concerns the existence
f a periodic orbit Yl of H wiich encircles Il exactly g times before closing.
As a preliminary step we must rule out the possibility of periodic orbits
~in Il with encircling multiplicity 1 < & < g. We give here only a sketch
of the full argument; the details will appear later.
C id the Poi : i ) > Xi Y.)i=2 £ th
onsider the Poincare maps P: (x Y5 (X%, ) 17 2..0,m for e
trajectories of H upon encircling once around Il (or II suitably narrowed).
. ) s G P . .
We seek to solve the functional equatiocn P* = Id for some nontrivial gq-periodic
2 . . -
point of P, and also to show that P = Id has no nontrivial solution for
1 £ & < ¢, Since all frequencies Woreeas W of v are distinct, there exist
: 1
real canonical coordinates (still denoted (x ,yi)) diagonalizing the linear
terms of P as a product of 2~dimensional rotatioms. Thus, for each & = 1,2,...,q
2 LG, . . S e -
the map P~ (denoted (x,y) + (X", Y')) has fixed points that are solutions of

the (2n~2) equations_ﬂ% = Id, or:

2 ~ P . P - o
X cos gl - sin 2% + e = X
LSS q
2 . ) D
% sin 2 + vy_cos 2 -~ + ... =
1f2, q Y S 'Q.q (]7”
J3c0521Qw ~y. sin2glw, +... z x?
- “T3 73 3 ’
S sin2piw + 2w+ Ty
A sinlgpdw, SACLEY. R 4

n . . -
x cos2filw ~y _sinZgilw +... =%
n°’n n

n . s ;
x sin2nlw +y cosZeiw  +t...
n°’n n

2 5
(x7) + (v;) 1

=]

jere the omitted terms are of order [|n] +

i o™

i=2

near the point h = 0, x =y = 0 on Y.
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a) Absence of small periodic orbits., For each £ = 1,2,3,...,q~1 the matrix

of the linear terms in (x,y) is nonsingular. 1In this case the implicit
function theorem guarantees the uniqueness of the solution x = y = 0, whic
corresponds to the known periodic orbit y(h). Thus the tube II (suitably
narrowed) contains no periodic orbits of H of encircling multiplicity less
than q — excepting yv(h) which have encircling multiplicity of ome.

b) Existence of g-periodic orbits ¢ reduction to 2-surface S(hj.

Next consider the existence of a nontrivial solution (nmot y(h)) of
the equations Z? = Id. Here the first pair of equations reduce to

2 2
@ x" . =15, YO

X ='y2 F el = ¥, SO the implicit Function theorem
is not applicable to the set of (2n~2) equations.
' s . 2
However, consider the last (2n~4) equations and treat (x ,y7,h) as

parameters near zero. Then solve for differentiable functions

j i, 2 i, 2 . .
XJ = OJ(X :sth), y. = TJ (x >y2:h) J = 354,050
~5
. . . o4 a4 2n=1
For each small |h| this locus in the ball B = % {transversal to Y

,
X Si) is a 2-surface S{h), covering a neighborhood

within the tori-i Szn~
of the Arigin in the (xz,yz)mplane. Each point of S(h) is moved bY.ES so
that only the (Xz,yZ) coordinates are changed, and the other coordinates
are unchange&;

c) Existence of q—periodic orbits: fixzxed points on S(h)

i 2

Introduce the symplectic polar coordinates u, = .Li_lgﬁﬁil.m
= . an v/ 5 i 1 bl G e fen 1, . g q
Si arctan }i,xi and write the ¢ th itterate P~: (u,9) =~ (Y ,®Y.
Restrict'fs to the surface S(h), use the polar coordinates u = u,, 9 = 62,

and then compute
q _ ‘ d _
U =ut eee. ® = 0+ Zpptq(ah-Bu) + ....

; . ;2
where the omitted terms are of order {(h™ + uz).



a
W . 3
ine constants ¢ = —= and B = - — (at = 0, u = 0) are assumed nonzaro
an u

assume o > 0, 5 > 0 and the other cases involve similar arguments.
Thus we saek a solution (u,8) with u > O for the pair of equations
gah =pu)+... =0, u +... = u,
Clearly, for n < O there is no solution with u > O.
However, for each h > 0, the implicit function theorem applied to the first
equation yields

u = u(d,n = h+ ...

&
e = . .= . A i s ~ 7
wiicin specliies a curve ([1) on the surface S \h) .

P"i

¥Yach poiat of £*h) is moved bs so that {(at most) the radial
P w \ 7 -

coordinate u chaanges. If pd mapoed S(it) into itself, then areaconservation

.

would yield a fixed point on {(h). But, in any case, AP_q is a symplectic

n
I .
map and so the differantial 1-form & (U.g dd* - u.df.) is closed.
o 3 . Jj 3.
Jj=4 . ]
. . 2n- . - . i . .
within the simply-connected ball B n-l this 1-form is the differential dW

i
(Ut - was.

of a real function W. 3But on {(h) we have @q = Sj for j = 2,3,...n and

]

U;i = uj for j = 3,...,n 50 we obtain dW

Since W must have cwiticql points at its maximum and minimum on the
compact set C(h), we obtain at least two fixed points of Eq on each such

these points produces a nontrivial g-periodic orhjt

h

curve C(h). Each o

‘{il) (h) and Y;Z) (h).

. s - - Y .
d) Existence of elliptic orbit Y- Since H « g, we can selact h > 0 so
that all g.periodic orbits of H in Il are nondegenerate, with distinct

characteristic multipliers.
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The method for this part of the proof is to show that the nondegeneracy
of the q—periodia orbits implies ﬁhe nondegeneracy of the critical points
of W on {:(h). Then there are only a finite number of such critical points
of W and classical index~theoretic arguments show that at least one of
these is elliptic, and so yields the required elliptic periodid orbit Yl

with distinct characteristic frequencies.

We defer the details of the above proofs, and the application of thea

three lemmas to the principal theorem, to the completed paper that will

L. Markus

Universities of Minnesota, U.S.A. and

Warwick, U.X.

K. HMeyer

University of Cincimnati, U.S.A.
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