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ON THE TRANSEVERSALITY CONDITIONS IN ELECTRICAL CIRCUITS

By Shigeo ICHIRAKU

1. Introduction.

In S. Smale’s formulation of electrical circuit theory ([1})
and in T. Matsumoto’s extension of it ([2]), the transeversality
conditions of the characteristic manifolds and the Kirchhoff spaces
are standing hypotheses. Of course, accoding to Thom’s transeversality
theorem we can make them transeversal by arbitrarily small perturbations
of the characteristic manifolds. But two problems g remain@®. First,
is it possible that the perturbations of the characteristic manifolds
are realized in electrical circuits? Second, according to the tempera-
ture or to the pressure and so on, the characteristic manifolds are
always perturbed and hence the transeversality may be destroved.

Therefore, the following problem proposed by T. Matsumoto 1is
natural.

Problem. By adding small capacitances parallel to the given
circuit (or/and small inductances series), can we make the characteristic
manifold and the Kirchhoff space transeversal ?

In this note, under a certain weak condition we will give the
affirmative answewr to the above problemn.
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enlightening conversations,

2. Statements of results,

As in [1l], we assume that the electriél circuit is represented
by an oriented graph G. Let C. (Cj) be the real j-chains (j-cochains)
of G, j=0,1. Then the currents and thé&oltages in the branches of the
circuit can be thought as elements of Cl and Cl respectively.

The characteristic manifold A =A(&) representing the characteris-
tics of the elements (possibly including non-linear coupled resistors
and so on ([(2])) is a 2b-@ dimensionnal smooth submanifold of Clx Cl,
where b is the number of the branches and ? corresponds to the number
of the resistors. Note that § <€ b,

The Kirchhoff’s laws restrict the possible states to a b-dimen-
8ional linear subspace called the Kirchhoff space, K=Kerd X Im}*
of C, X ct where @ (%) is the boundary (coboundary) operator,

B:Cl—-———ico, 0

(3* :C ——-vcl).
Now, we define the controlledness of the characteristic manifold,

/
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extending the casépf an independent element.

Definition. The characteristic manifold JN. is called voltage-
controlled (current controlled) if there exists a smooth function F:
Cl X Cﬂ‘—~$~R9 such that the partial derivative with respsctive to

the first factor D F;R@——*)R’ (with respective to the second factor

1
b . -1
DZF:R ——-;R’S has the maximum rank? and A =F (0) .
Definition. The characteristic submanifold 4\ 1is called locally

controlled if Jﬁ_ is locally voltage-controlled or current-controlled.

The results are the followings.

Theorem. If the characteristic manifold pA—p(g) is voltage-
controlled (current-controlled), by adding small capacitances parallel
(small inductances series) to G we can get a -new circuit G’ for which

A'=A(G’) and K=K(&") are transeversal.

Corollary. If the characteristic manifold A is locally

controlled, by adding small capacitances and inductances appropriately

we can get a circuit G’ for which A’and K’ are transeversal.

3. Preliminaries from circuit theory.

We recall what we need from circuit theory. (cf., Rohler[3].)

Let V be a linear subspace of Cl such that C1=Ker’9 @® vt
where v+ is the orthogonal complement of V (with respect to the
usual metric in C1=Rb). The space V is linearly isomorphic to the
space Ker@? . We denote the into isomorphism V—>Kerd << C by 7 .
Let p:Cl~—>V’ be the projection map along Ker @ (i.e. p(Kero )=0).

Then we obtain the following commutative diagrams:

0-——~>V—£—>C -~?C O-——‘»V—-)C P—éV
l l l lgtl
Oe———v*e—c C O<—~V*<——(‘(—(v

where V* is the dual space of V, 1* and pP* are the dual maps of 71

and P respectively and the vertical maps are the natural isomorphisms.

Since the rows of the above two diagrams are exact , Kirchhoff'’s laws

can be represented as follows.

(KCL) . € Ker p. (KVL) U € Ker 1*.
Now, we give the space V explicitly. First, we take a (maximal)-

tree T of G. We assume G to be connected for simplicity. Then T is

characterized as follows.
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1.) Each node of G is a node of T,
2.) T is connected.
3.) T contains no loop.
1f we remove a branch of T, then T is disconnected into two parts, and
hence the set of nodes of G is also partitioned into two disjoint sets.
(This makes a fundamental cut-set.) Note that each pair of nodesof G
is connected uniguely through only branches of T. We call the subgraph
of G which consists of the branches not contained in T cotree or link
and denote it by L. Put V=C, (L), then v+ =C, (T). Hence C,=Kerd @ vt
And we obtain the Efllowing maps:
) <t ct, cl_._E’._>cl(T).
We call the matrices B and Q representing 1% ana p with respect
to the natural basis of C1=C1(G) the fundamental loop matrix and the
fundamental cut-set matrix respectively.

Finally, the Kirchhoff'’s laws are represented as follows:
(KCL) Q¢ =0, (KVL) BU =0,

By the way, QBt=O and BQt=O, because p 1 =0 and 1* o p*=0.
Now, we note that the Kirchhoff space K is

KerQ X KerB (=Ker ‘L* X Ker p),
and the map

p*:C, (L) X cH(T) —> K
is an isomorphism. Therefore the currents of link branches and the

1
voltages of tree branches ( ﬁ‘L’ ?VT) S Cl(L) X C7(T) can be thought
as coordinates of K.

3; Proofs.

Let A=A(G) and K=K(G) represent the characterristic manifold
and the Kirchhoff space for G respectively. Since /\ is a (2b-§ )-
dimensional smooth submanifld of Cl X Cl(=R2b), there exist a neighbor-
hood U of x in R2b and a smooth function F:R2b~—5 sz such that

rank(JF) = § and 1\4}U=F~1(0),

where (JF)x represents the Jacobian matrix of F at x. By the definition
of transeversality, the following holds clearly.

Proposion. j\.and K are transeversal if and only if the derivative
.of F'K=K —> RrP D(FIK):Rb~—+ R®  is onto map.

Now, we fix a tree T of G. Note that the matrices B and Q have
the following forms ([3]).



82
_ o _ t
B=[I;Al], Oo={-A";11,
where I is the identitv matrix.
”IL )éc(L)xc(T)

Put ii=( 1 (G),

L’ l

V=(v,, Uy €cm xcim=cle),
then '

J(F])=T(Fe(- L X p*))=JFeJ( T X p*)=[J;F, J,UF][Bt ot]
0 0

=3¢, Fy J,&TF, Iy, Fr T Fl [ It 0

AT O

lo-a

o 1
— o ' o t - ] — _ - *
‘[JﬁLF“J{LTF)A , (JULF)A'{'J.U_‘_F]. (*)

We need the following Lemma.

Lemma. By adding small capacitances parallel to the given circuit
G, we can obtain the new circuit G’ for which there exists a tree T’
such that the link L’ of T’ contains G.

Proof. Take a tree T of G. And add a small capacitance to
each branch of T, then we obtain the new circuit G’ and the subgraph T’
consisting of the elements added is clearly a tree of G’. The link L'
corresponding to T’ contains G. This proves the lemma. (Alternatively,
we can obtain the new®*circuit G’ in the lemma by adding one new node

and connecting it to each node of G.)

Proof of Theorem. It is sufficient to show that the new
characteristic manifold _A(G’) and the new Kirchhoff space K(G’) are
transeversal at any point. Note that the function F’ representing J\CGU
is essentially the same as F, since we have added only capacitances.
The function F' is independent on the currents of the branches of T'.

Hence,

'Jﬁde;O, and rank(Jﬁ_F):rank(JﬁijFﬁ.

By the assumption of the theorem, the rank(Ja'F) is ¢ at any point.’
Therefore, according to (*) and the proposition, we see that _A(G') and
K(G') are transeversal at any point, ' This proves the half of the theorem.
The rest of the theorem is proved dually by addlng small inductances
series to link branches,

Finally, the corollary is deduéed from the theorem, since the

transeversality is local and independent of the choice of the particular
tree.
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