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0 . Introduction

In this paper we shall give some fundamental theorems of a

non-linear integral equation of Volterra-Hammerstein type
t
(P) x(t) = £(t) + Jﬂ a(t,s)g(x(s),s)ds .
0

The main purpose of this paper is to prove a local existence
theorem and an extension theorem. And we shall announce some
further topological properties of the family of solutions such
as Kneser's property.

We first explain the notations and definitions used in this
paper. For the details, see [3] and [5],

Let R+ be the set of non-negative numbers, J be a compact
interval in R+, K be a set in R" and |-| be the Euclidean norm
in R®. For each J and K we define a space Lp(J,K) (1< p<®)
of all measurable functions x : J-—> K satisfying "x(v”|p< o,
Lp(J,Rn) is known to be a Banach space, which we shall denote
by Lp(J). The adjoint space of Lp(J) we denote by L;(J), and

. * * *
the product space Lp(J) €y~~~€)Lp(J) ( with n factors ) by Lp(J)n
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we shall denote the space of linear operators on rR” by M.
our standing assumptions on f(t), g(x,t) and a(t,s) are
following (I), (II) and (III).
(1) £ : R" ——> R"  is continuous

(IT) Let p satisfy l<p<>. g : R™x R+-—--——;»Rn is a function

such that

(1) for each x,eRp, g(x,t) is measurable in t

(2) for each t6£R+, g(x,t) is continuous in x, and
. +

(3) for each compact set KCZRn and each compact interval JCR

there exists a measurable function m(t) such that

lg(x,t)]ﬁ,m(t) for (x,t)e KXJ and [m(t)pdt<°°.
J

(ITI) Let p satisfy'lg_p< © . a: R xR —s M is a mapping
such that ' |
(1) for each compact iﬁtefval Jc:R+ and each t in R+ the
mapping S : x(')——;—}j;a(t,s)x(s)ds is a bounded iinear
mapping of Lp(J) to R™.
(2) the mapping R+-———>L;(J)n defined by t ——sal(t, ) 1is

*
continuous in the weak*-topology on Lp(J)n .

1 . A Local Existence Theorem

R.K.Miller and G.R.Sell [5] proVed an existence theorem of
continuous solutions of (P) replacing the condition (III-2) by a
stronger condition (III-2*) defined by

(III-2*) the mapping R+———e-L;(J)n .defined by t —s> al(t,-)

is continuous in the strong topology on L;(J)n .

Their proof is.completed by standard fixed point arguments in the
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. space of continuous functions. They say in [5] that they have

kno counter example to show that their existence theorem is false
under our weaker assumptibm on a(t,s) . If a bounded solution

of (P) exists, then it is continuous even under a weaker condition
(ITI-2) . We think that our aséumptions (I),(II) and (III) are
natural for the existence of continuous solutions of (P).

Though we can give an existence proof of a solution by using
Carathéodory approximate solutions, here we shall give a proof
which uses Schauder's fixed point theorem in Ll(J) with the strong
topology. The essential feature of our proof is that we make use
of the weak compactness of Bg(J) in the function space Lp(J) and
the L1 strong topology in the space of continuous functions.

We shall introduce the space BE(J) by

B?(J) = { x(v)e’Lp(J) : |x(t) | €m(t) for a.a. t in J }

and for each x(¢)e Bg(J) and te€J define the mapping T by

_ t
T(x) (t) = £(t) + J a(t,s)x(s)ds .
0

Lemma 1 . The space BE(J) i8 compact in the weak topology
of Lp(J), and hence the iﬁduced weak topology on Bg(J) 18 a metrie
topology. '

Proof. Since BE(J) is bounded in Lp(J), Bg(J) is weakly
sequentially compact ([%,page 294]). Furthermore, the convex set
Bg(J) is closed in the strong topology of,Lp(J), and hence Bg(J)
is closed in the weak topology of Lp(J) ([1,page 422]). Consequent-
ly, by the Eberlein-Smulian theorem ([1, page 4301), BE(J) is
weakly compact. We know by ([1l, page 434]) that the weak topology

of Bg(J) is a metric topology.
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Lemma 2 . The function t — T(x) (t)  is continuous on J for

cach fized x(¢)e Bg(J) ]

This lemma follows easily from assumptions (I) and (IIT).

l By assumption (III), we have the following Lemma 2.

Lemma 3 . The mapping a(t,*) belongs to Lg(J) for any t€J

and sup {I[a(t,)llq : teJ }< o ( p—l + q-l = 1)

Lemma 4 . T <s a continuous mapping of B?(J) with the weak
topology into Ll(J) with the strong topology, and hence TBg(J)

i8 compact in the stromng topology on Ll(J).

Proof . By Lemma 2, T(x)(t) is continuous in t€ J and hence
integrable on J. Therefore Tx(+) belongs to Ll(J) for each x(-)
eBg(J). Let { xk(-) }C:BE(J) be a sequence such that

lim ( xk(-) ~ x(+) ) = 0 in the weak topology.

k—> o
We have by the definition of the weak topology on B?(J) and Lemma

3 that for each fixed t in J the mapping

Tt : BE(J)———%-Rn defined by
T
Ttx(-) = f£(t) + Jya(t,s)x(s)ds is continuous in
0

x(-)e Bg(J) with the weak topology. Hence we can say that

lim (T, x%x, (+) - T.x(*)) =0 in Rn. Furthermore, the estimate
k —>o t7k t
lTﬁkbﬂémmcﬂf&H : teJ }
p 'b@ Ty s
+ sup {Ha(t,v)llq : t€J }F( | m(t)Tdt) is valid for
J

every t in J. Then { Ttxk(') } is a bounded sequence of integra-

ble functions. Hence, we have by the Lebesgue theorem that
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lim uTxk(~) - TX(‘)”l = k%i?mJ;thxk(‘) - TtX(~)Idt =0,

k —»w

which shows the continuity of T in the strong topology of Ll(J).

Let J be a compact interval in R+, K be a compact set in rR"
and m(t) be a function defined in (II-3) corresponding to the
pair ( J, K ). Here we define the operator G : Ll(J,K)~—%-Bg(J)

by G(x) (t) = g(x(t),t) .

Lemma 5 . The operator G is continuous from Ll(J,K) with
the strong topology, into Bg(J) with the strong ( and hence,

weak ) topology.

Proof . Let { xk(-)}CZLl(J,K) be a sequence which converges

to x(-)e Ll(J,K) with the strong topology. To show lim ka(-)

k —

= Gx(¢) in Bg(J) with the strong topology, assume the contrary.

Then we can suppose that there exists an €p > 0 such that
‘f |g(xk(s),s) - g(x(s),s)lpds‘>€o for every k.
J
Since { xk(')} converges to x(¢) in Ll(J,K), we can also assume

that lim xk(t) = x(t) and hence by (II-2) lim g(xk(t),t) =
k—-yoo k—-}oo

g(x(t),t) for almost all t in J. Furthermore, since {g(xk(t),t)

is bounded by the function m(t) on J, we have by the Lebesqgue

theorem that 1lim ]g(xk(s),s) - g(x(s),s)|Pas =0 .
k— o|JT

This contradiction proves Lemma 5 .

Now we can prove the following local existence theorem.
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Theorem & . Let £, g and a.satisfy, respectively, assumptions
(1), (II) and (III) . Then there exists an interval [0,B], B>0 ,
and a continuous function X : [O,B]————§Rn such that (P) <a

satisfied on [0,8]

Proof . By standard arguments we can find an interval J = [0,B8],

' B>0, and a compact set K< R such that

K =U{ K(t) : teJ } ( the closure in R" )
K(t) = { peRn: | p - £(t)| &6} and

%/p

§ = sup {Ila(t,-)llq : t:GJ‘}'(‘[ m(t)Pat ) , where
J

m(t) is the function corresponding to the pair ( J, K ) in (II?3).
The set D(J,K) defined by
D(J,K) = { x(+)e L;(3) : x(t)€K(t) for a.a. t in J }
is a closed and convex set in LﬁJ,K). By Lemma 2 and Lemma 5, the
vcomposite operator H = Te G is continuous of D(J,K) to Ll(J)’
both with the strong topology. Furthermore, we have by Holder's:
inequality +

| H(x) (t) - £(e) | = | Xa(t,S)q(x(s),s)dsl
0

+ sup {“a(tl')"q: tedJ } - ( fm(t)pdt )/P= S
J

for éach x(-)e D(J,K) and t€J and hence HD(J,K’C:D(J,K)’.
Since GD(J;K)C:Bg(J) , we have HD(J,K)C:TB?(J)‘ and hence by
Lemma 4 ( HD(J,K))a ( the closure in Ll(J) with the strong
topology ) is compact in D(J,K). VTherefore,kby Schauder's fixed
point theorem, we have an element x(-)€& D(J,K) such tﬁa£

x(+) = Hx(-) . This implies

t
x(t) = £f(t) + .] a(t,s)g(x(s),s)ds for almost all t in J.
o .
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Since the right hand side of this equality is continuous in t.,

the function x(t) must be continuous on J.

Then we see that

the above equality holds for every t in J. Thus we can obtain

a continuous solution which satisfy the equation (P).

2 . An Extension Theorem

We shall define the right maximal interval J of existence

for a solution x(t) of (P) by the followings.

x(t) is a solution of (P) on J and there does not exist an

extension of x(t) over an interval J which remains a solution

(S

of (P) and J is a proper subset of

Theorem 7 . Let xo(t) be a solution of (P) on some interval

Jl.

Then there exists a solution x(t) of (P) on [0,a) D J, that

1

18 an extension of xo(t) and such that [0,a) <s the right maximal

interval of existence for x(t). Moreover o is either © or a
finite number such that 1lim sup |x(t)]| = « .
tT o

Proof . Consider a given solution xo(t) on an interval Jl'

Let M be the set of all extensions of xo(t), that is, an element

a€eM shall be represented by

a = {xa(t) : xa(t) satisfies (P) on J(a)>J

, and xaIJl =x.1,

0

where J(a) is some interval and xaIJ1 denotes the restriction

of x, on Jl. M is partially orderd if a<a’

means that J(a) C

J(a') and xa,|J(a) =x . Let ACM be a chain A = {av : veN }

Put J(b) =U {J(aé) : veN } and define a func

a

tion

xb(t), teJ(b)

by xb(t) = x_ (t) if t€.J(av) . Since any two elements a,

v
and av,(€<A ) are comparable, this function

xb(t)

is well-defined



and satisfies (P) on J(b). Therefore

p =1 xb(t) : xb(t) satisfies (P) on J(b):>Jl and x

pelongs to M and is obviously an upper bound of A. Thus, by
zorn's lemma. M contains a maximal element

c = { x(t) : x(t) satisfies (P) on J>J, and x{Jl = x, }

1
By the definition of maximality, J is the right maximal interval
of existence for x(t). Either J = [0,*) or J is a bounded
interval. Suppose that  J is a closed interval [0,0] . Then the
translated equation
o
y(t) = { £(t+a) + . a(t+a,s)g(x(s),s)ds 1}
t

+ a(t+a,s+a)g(y(s) ,s+a)ds
0

can be defined and hence by Theorem 6 this equation has a solution
on some interval [0,6] . If we define x(t+0) = y(t) , then x(t)
satisfies (P) on [0,0+S8] . This contradicts the maximality of J.
Hence J must have the form [0,a) .
Now we shall prove the latter half of the theorem. Assume

that o is not « and that x(t) satisfies lim sup |x(t)]|< .
t 1 o

Then K = { x(t)e R : t [0,0)} is compact. Let m(t) be a

function defined in (II-3) corresponding to the pair ( [0,a]l, K ).
Let {tk} be a sequence such that tkT o as k—~« and

~lim x(t

k ~— o

= x,€K . We define x(a) by x(a) = x

k) 0 Noticing

0
that the relation
t o

| a(t,s)g(x(s),s)ds - a(a,s)g(x(s),s)ds |
0 0
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¢4
] (a(t,s) - al(a,s))g(x(s),s)ds]
0

IA

+

* i
sup{lla(t,-)“q : tel0,al} (| m)Par)’P
0

holds for each t<a , we have x(t) satisfies (P) at t = o and

lim x(t) = x(a) . Hence, x(t) is continuous on [0,a] and also
t—a

satisfies (P) on [0,0]. Similarly as above, we can constract a
continuous function x(t) which satisfies (P) on an interval

(0,a+e] ,e>0 , which contradicts the maximality of [0,a) .

Remark . The condition 1lim sup |x(t)]| = «® can not be reduced
t T a
to lim x(t) = = ( see [6] and [7] ).
t1f a

3 . Some Further Topological Properties

In this section, we shall announce some properties of solutions
without proofs. By Theorem 7, we can assume that every solution
x(t) of (P) is defined on some right maximal interval [0,a(x))
for existence. Define B>0 by B = inf {o(x) : x(-) is a solu-
tion of (P)} . We denote by F the set of all non-extendable

continuous solutions of (P) and by F(J) the restriction of F

on a subinterval Jc [0,B) . For each te€[0,B), S(t) denote
the cross-section in R%, s(t) = { x(t)e R"™ : x(-)e F } .
Lemma 8 . The closure {S(t) : teJ} is compact in R for any

compact subinterval J<C{0,8)

To formulate a topological property of solution families,

we need the following definition ( see [1] ).
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A subset Q of a metric space X is called a compact R iff
0 is homeomorphic to the intersections-of a decreasing sequence

of compact absolute retracts.

Theorem 9 . Let £, g and a satisfy, respectively, assumptions
(1) , (II) and (III),and let I De any compact subinterval in

‘[0,6] . Then the solution family F(J) <s a compact Re in\Ll(J).

This theorem can be proved by Lemma 8 and the similar argu-
ments stated in Szufla's work [9].

Let C(J) denote the set of all continuous functions defined
on an interval J. The product topology of C(J) is the topology
of pointwise convergence. F(J)c C(J) 1is clear. As a corollary

of Theorem 9, we have the following result.

Corollary 10 . The space F(J) is sequentially compact with
the product topology of C(J) for any compact interval JCI[0,B).

Moreover S(t) is compact and connected in R for each t €[0,8).

The céncrete proof of Corollary 10 will be found in author's
paper [41].

If the condition (III-2) is replaced by (III—Z*) in Theorem 9
we sée that F is also a compact Rs in the Fréchet space C[O,S) .
Under these stronger assumptions we have the following theorem

known as Kneser's property ( see [8] ).

Theorem 11 . The space F is compact and connected in the
Fréchet space C[0,B). And the cross-section S(t) is a continuous
function of t in [0,B) to compact and connected sets with the

Hausdorff topology.

10
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