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on the Oscillation of Fourth Order Nonlinear Differential Equations

with Deviating Argument

T. Kusano and M. Naito

Introduction

The purpose of this note is to report some results which we have
recently obtained concerning the oscillation of solutions of the nonlinear

differential equation
* [x()y" (D) 1" + £(y(g(L)), t) = 0,

where the following conditions are assumed to hold:

(a) r(t) is continuous and positive on [0,=);

(b) g(t) is continuous on [0,») and lim g(t) = «;

(¢) f(y,t) is continuous on (—m,m)x[gj:) and yf(y,t) > 0 for y # 0.
It should be noticed that the deviating argument g(t) is allowed to be -
retarded (g(t) < t) or advanced (g(t) > t) or otherwise.

Equation (*) is called superlinear if f(y,t)/y is nondecreasing in y
for y > 0 and nonincreasing in y for y < 0; (*) is called strongly
superlinear if there is a number ¢ > 1 such that f(y,t)/ly!asgn y is
nondecrgasing in y > 0 and nonincreasing in y < 0. Dually, equation (%)

is called sublinear if £(y,t)/y is nonincreasing in y for y > 0 and

-nondecreasing in y for y < 03 (%) ié called strongly sublinear if there

exists a positive number B < 1 such that f(y,t)/lylssgn y is nonincreasing ,

in y > 0 and nondecreasing in y < O.
Our attention will be restricted to solutions y(t) of (*) which exist

on some ray [Ty,w) and satisfy



sup{|y(t)|: t > T} > 0 for any T2 L

Such a solution is said to be osciliatorx if it has arbitrarily large zeros

and nonoscillatory otherwise.

We are interested in finding necessary and sufficient conditions for
all solutions of (*) to be oscillatory. The results obtained extend
considerably those of [1], [2] for ordinary differential equations of the

form less general than (*). Some of the results of this note will appear

in [3].

It is convenient to distinguish the two cases:

t = o
(4) Rr—(t—)‘dt— ,

t
(B) J:‘;TET dt < =,

The following notation will be used throughout:

gx(t) = max{g(t),t}, gx(t) = min{g(t),t},

¢ .
= | (-58)s _| s-¢t
R(t) = Jo ) ds, p(t) = f: (5 ds.

1. Nonoscillation Theorems

We first present sufficient conditions which guarantee the existence
of nonoscillatory solutions of (*) with special asymptotic properties.
From these results necessary conditions for the oscillation of all

solutions of (%) willvreadily be derived.

THEOREM 1A. Let (*) be either superlinear or sublinear. Suppose

that (A) holds.




(i) A necessary and sufficient condition for (*) to have

a solution

(t) such that lim y(t)/R(t) = a # 0 is that
y — T _—

rlf(cR(g(t)),t)ldt < o for some c # 0.

(ii) A necessary and sufficient condition for (*) to have

a solution

y(t) such that lim y(t) =b # 0 is that

troo

rR(t)‘f(c,t)IAt <‘cu for some c # 0.

THEOREM 1B. Let (*) be either superlinear or sublinear. Suppose

that (B) holds.

(i) A necessary and sufficient condition for (%) to have

a solution

y(t) such that lim y(t)/t = a # 0 is that

troe

rp(t)lf(cg(t),tﬂdt <o for some c # 0.

(i1) A necessary and sufficient condition for (%) to have

a solution

y(t) such that lim y(t)/p(t) = b # 0 is that

troo

[ tlf(cp(g(t)),t)ldt < = for some c # 0.

We give an outline of the proof of Theorem 1B-(ii).

(Necessity) Let (*) have a solution y(t) such that lim y(t)/R(t) = a.
f g e ]
We may suppose that a > 0. There exist positive constants T, a;s 2, such

that

a,8(t) ¢ y(g(t)) g ayg(t) for t 3 T.
This implies that

(1.1) £(y(g(t)),t) > f(alg(t),t) if (*) is superlinear,

(=)



(1.2) f(y(g(t)),t) > (al/az)f(azg(t),t) if (*) is sublinear.

It turns out that the following three cases are possible:
(I) y'(t) > 0, y"(t) > 0 and [e(t)y"(£)]" > O for t > T;

(I1) y'(t) > 0, y"(t) < O and [r(t)y"(t)]" > O for t

nv

T;

(II1) y'(t) > 0, y"(t) < 0 and [r(t)y"(t)]' < O for t > T.

nv

" Let Case (I),hold. Then, integrating (*), using (1.1), (1.2) and noting
or (II)

that [r(t)y"(t)]' > 0, we readily obtain

[mf(aig(t),t)dt < o,

where i = 1 if (*) is superlinear and i = 2 is (*) is sublinear. Let
Case (III) hold. We multiply (*) by p(t), integrate it from T to t, add

y'(t) to both sides of the resulting equation and let t - . Using the

inequalities

y'(t)

nv

-[r(t)y" (L) 1 'p(t),

y'(t)

nv

ds
-r(t)y"(t) ’
‘t r(s)

we arrive at
00
I p(t)f(aig(t),t)dt < o,

where i = 1 or 2 according as (*) is superlinear or sublinear.
(Sufficiency) Suppose ¢ > 0. Put a = ¢/2 or ¢ according as (*) is
superlinear or sublinear. Take T > 0 so large that

r p(t)£(cg(t),t)dt < —g— and Ty = inf g,(t) > 0.
T t>T

Let Y designate the linear space of all continuous functions y(t) on [To,m)

such that



lyll = sup [ly(t)l/tz] <
2T,

X = {y e Y: at < y(t) ¢ 2at for t > To}.
Clearly, Y is a Banach space with norm ”-][ and X is a bounded, convex and

closed subset of Y.

We define the operator ¢ by

teet
@ = at + [ [ %0 10500 ,00as
TV's

t
* tjw r?§> 'I (t - 8)f(y(g(s)),s)ds
t

.
+t| 2L as. J f(y(g(s)),s)ds
f: x(s) T

+ th[Jm crzc; dc)f(y(g(s)),s)ds | for t > T,
tUs .
(ey) (ty = at + TI:U: Gr(_a)s dc]f(y(g(S)),s)ds for '1‘0 <tz<T.

It can be shown that ¢ is a continuous operator mapping X into a compact
subset of X, Thus the Schauder fixed point theorem is applicable, and ¢

has a fixed point in X. This fixed point provides the required solution

of (%*).

2, Oscillation Theorems

Our next task is to give sufficient conditions for the oscillation of
all solutions of-(*) by iimiting ourselves to the strongly superlinear and

strongly sublinear cases.



THEOREM 2A. Let (*) be strongly superlinear. Suppose (A) holds.

there is a differentiable function h(t) on [0, ) such that

and

then

h(t) < g, (t), h'(t) > 0, h(t) >« as t> =,

J R(a(t))] £(c,t)|dt == for all c # 0,

all solutions of (*) are oscillatory.

then

If

THEOREM 2B. Let (*) be strongly superlinear. Suppose (B) holds. If

F*(t)lf(cp (g*(t)),t)ldt =~ for all c # 0,

all solutions of (*) are oscillatory.

then

THEOREM 3A. Let (*) be strongly sublinear. Suppose (A) holds.

R(g,(t))
r————-—- | £(cR(g(t)),t)|dt == for all c # O,
R(g(t))

all solutions of (*) are oscillatory.

then

THEOREM 3B. Let (*) be strongly sublinear. Suppose (B) holds.

g4 (t) %
r p(g (£))|£(cg(t),t)|dt == for all ¢ # 0,
g(t)

all solutions of (*) are oscillatory.

tory

v eventually positive.

Here we sketch the proof of Theorem 3A. Let there exist a nonoscilla-

solution y(t). Without loss of generality we may suppose that y(t) is

It is easy to show that y'(t) > 0, [r(t)y"(£)]' > O

for all large t, say t > T, that there are positive constants ays a, such



(7
(2.1) a; £ y(t) ¢ aR(E), t2T,
and that the following inequality holds:
(2.2) y(t) 2 R() [x(O)¥y"(B)]", t2 T,

where

t
- (t-s) (s-T)
RT(t) = JT IO ds.

Let T' > T be such that g*(t) > T for t > T'. An integration of (*) yields

(2.3) - [x@®y"(®1 2 fw f(y(g(s)),s)ds, t > T'.
. ,

Combining (2.3) with the inequality
y(8(t)) 2 Rp(g, () [x(t)y"(B)]1', ¢t T,

which follows from (2.2), we have

(2.4) y(g(t)) > RT(g*(t))r £(y(g(s)),s)ds, t > T'.

If we apply the lemma stated below to (2.4), observing from (2.1) that

y(g(t)) < aRT(g(t)), t 2 T', for some constant a > 0, then we conclude that

rRT(g*cc))

m £(aR (g(t)),t)dt < =,

But this contradicts the assumption of Theorem 3A.

LEMMA. Let (*) be strongly sublinear. Let u(t), w(t), w(t), u(t) pe

Positive continuous functions on (T,*) such that u(t) < 1, u(t) < aw(t),

and
u(t) > u(t)w(t)f:Qf(u(s),s)ds for t > T,
t

where a is a positive constant. Then,




7§

It is of interest to observe that from the foregoing results necessary
and sufficient conditions can be obtained for the oscillation of all

solutions of certain classes of differential equations of the form (%*).

THEOREM 4A. Let (*) be strongly superlinear and advanced. Suppose

(A) holds. Then all solutions of (*) are oscillatory if and only if

f”R(t)lf(c,t)[dt =o for all c # O.

THEOREM 4B. Let (*) be strongly superlinear and advanced. Suppose

(B) holds. Then all solutions of (*) are oscillatory if and only if

rtlf(cp(g(t)).,t)ldt = for all c # O.

EXAMPLE 1. Consider the strongly superlinear retarded equation

1/2 1/2

[y (o + (3/16)t |yt )lzsgn vy /% = o,

which has a nonoscillatory solution y(t) = t-llz. As easily verified, the

integral condition of Theorem 4B is satisfied for this equation. This
example shows that, as regards the oscillation of strongly superlinear
equations of the form (*) with general deviating argument, there is a gap
between the necessary condition and the sufficient condition that were

given in the above theorems.

THEOREM 5A. Let (*) be strongly sublinear and retarded. Suppose (A)

holds. Then all solutions of (*) are oscillatory if and only if

rlf(cR(g(t)),t)ldt = for all c # 0.



-~ i

THEOREM 5B. Let (*) be strongly sublinear and retarded. Suppose (B)

holds. [Then all solutions of (*) are oscillatory if and only if
ho_0d3

rpm |f(cg(t),t) [dt = for all c # 0.

EXAMPLE 2. Consider the strongly sublinear advanced equation

-7/2 1/2

Although the integral condition of Theorem 5A is satisfied, this equation
has a nonoscillatory solution y(t) = t2. Thus it follows that there is a
‘gap between tﬂe necessary condition and the sufficient condition for the
oscillation of all solutions of the strongly sublinear equation (*) with

general deviating argument.
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