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Existence of Periodic Solutions. of One—dimensional

Differential-delay Equations
Tetsuo Furumochi

1. Introduction

This paper is motivated by the data of numerical computing
experiments by Professor Y. Ueda and his colleagues. In the study
of phase lock loops which are widely used in communication systems
also, in order to utilize the frequency range effectively, it has
become necessary to consider phase lockﬂloops acting in the high
frequency range. In this case, it is necessary to analyze the
acting principles of the system with time delays, since we cannot
ignore influences to the system of time delays which arise in the
parts of the system. In their studies for this purpose, the

following difference-differential equation arises:
(1.1) a(t) = 6 - sin(u(t-h)), t 2 0, 8§ 2 0, h > O.

Roughly speaking, the variables in (1.1) are related with the model
in the following way: t is the time, u(t) denotes the phase
difference at time t, 8 is the difference between signal frequency
and free-running frequency of the voltage-controoled oscillator,

and h is the sum of the time delays which arise in the parts of the
system. In the case where 0 g § g 1, (1.1) has trivial periodic
solutions, namely, the constant functions u(t) = a, t 2 0, where a
is a number such that sina = 8. In their experiments, they observed
the existence of a nontrivial periodic solution for § = 0.3 and h =
2, a periodic solution of the second kind for 6§ = 0.8 and h = 2, and

solutions which approach asymptotically to a constant solution. Thus
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there arise the following problems. Find the relation between § and
h so that (1.1) has periodic solutions, or a constant solution is
uniformly asymptotically stable. We shall give sufficient conditions
for these problems in Sections 2, 3, and L.

There are various methods and many results for the existence of
periodic solutions of functional differential equations [ef. 1, 2, 3,
4, 6, 8]. We shall show the existence of periodic solutions of (1.1)
by using a fixed point theorem for the truncated cones by Krasnosel'skii
in [2, 3] (see Section 2). Especially, for the existence of a periodic
-solutions of the second kind of (1.1), we consider also the case where
§ > 1 (see Section 3). On the other hand, there are many results on
the stability of solutions of functional differential equations [cf.
5, T]. Using these results, in Section 4, we shall discuss the uniform
asymptotic stability of a constant solution, the nonexistence of
periodic solutions, and the nonexistence of periodic solutions of the
second kind.

For a given’h > 0, C denotes the space of continuous function

mapping the interval [-h, O] into R, and for ¢ € C, |¢] = sup |¢(8)].
-hg6<0 ‘
For any continuous function x(u) defined on -h g u < A, A > 0, and any

fixed t, 0 < t < A, the symbol Xy will denote the restriction of x(u)
to the interval [t-h, t], i.e., % is an element of C defined by x.(6)
= x(t+6), -h £ 6 < O.

2. Existence of a nontrivial periodic solution
Consider equation (1.1) for 0 £ & < 1. Let o = sin™%8. Then (1.1)
has a constant solution u(t) = a. Substituting x(t) = u(t) - a, t 2 -h
into (1.1), we have an equivalent equdtion

(2.1) © x(t) = 6§ - sin(x(t-h)+a), £t 2 0, 0 < & < 1,

§ - sin{x+a).

which has the zero solution x(t) = 0. Define f(x) .

Then f(x) satisfies the following conditions for -m — 2a < X < 7 - 2a.

(H1) £(x) is continuous, xf(x) < 0 for x # O, f(-EgggJ =1+ 6,



f(ﬁégg) =§-1and § -1 x flx) g1+ 6.
(H2) f(x) is nonincreasing in - n;2a < x < n;Qa, and f(x) 2
- gﬁl:ﬁlx for - Iigﬁ.s x £ 0, and f(x) 2 - gilzélx for 0 < x < E:EQ.
T-20, 2 =-= = =20 == 2

(H3) £(x) = -Lx + M(x) for L =#41-8% = cosa > 0, where M(x) is

the higher order part and satisfies lM(x) - My)| = u(c)[x - yl for

|x|, |y| s o and u(c) is continuous and nondecreasing with u(0) = 0.

Definition 2.1. Let E be a Banach space. A set KCE is:a :cone if
(i) K is closed and convex,
(ii) if ¢ is in K, then A¢ € K, A 2 O,
(iii) for any ¢ # O in E, both ¢ and ~¢ cannot belong to K.
A truncated cone is the intersection of a cone with a convex neigborhood

of zero. The neighborhood does not need to be closed.

%-< kl< 1, we define the following truncated cone K by

For kl,
K={¢eC: ¢(-h)=0, ¢(6) is nondecreasing on [-h,0], ¢(0)<(m-2a)k,}.

Lemma 2.1. Let

11(1-2a) 3(w—2a)sina+8cosa-8003(l3%:gi) .
F(U,) E O-.S.a<_’
Ba 8a°
where a = sina + cos(12-+ =), and let G(a) = min( 3(n—?a) n—2a—2cosa,
L " 8 8(1-sina) 2(1-sina)2
F(a)) and H(a) = max(-1=2_ , TH20-2008G 44y 1p 2 < < H(a),
l+sina . 2 2cosa
2(1+sina)

ﬁhén there exist kg, k; such that %-< ko< k< 1, and for ¢ € K\ {0},
x(t) = x(t, ¢) oscillates and all zero points are simple, and the
minimal values of x(t) are greater than -(w+2a)k;, and the maximal
values of x(t) are less than (m-2a)ky uniformly for ¢ & K\ {0}.
Furthermore, for the second zero point tg= tg(4) > 0 of x(t), we
T(¢)(¢) € K, and {t(¢)} is bounded uniformly for ¢ € K\{0},
where t(¢) = to+ h.

have x

For ¢ ¢ K\ {0}, define the mapping A by



A = XT(¢)(¢)'

Then, if 5o-—=<h < H(a), A is a positive mapping relative to K,
that is, A(K)C XK. Since {t(¢)} is bounded uniformly for ¢ e K\ {0},

define 1(0) = limsup t(¢). Then T: K » [0, =) takes closed bounded
¢ >0
sets into bounded sets. Furthermore, since x(t, ¢) is continuous in

(t, ¢), t(9) is continuous on K \ {0}. On the other hand, A takes
bounded sets into bounded sets because |A¢[ < (ﬂ—2a)ko. Moreover,

the following lemmas hold.

i
2cosa
neighborhood of zero, then

Lemma 2.2. If < h < H(a) and if G is an open bounded

inf |A¢| > O.
$€9GNK

Lemma 2.3. If h > ——E~Ey there is a zero A = p + ioc of

2cos
(2.2) AelA = -L, L = coso
with p > 0, 0 < ¢h < 7.
The linear part of (2.1) is
(2.3) ‘ x(t) = -Ix(t-h), t > O,
and (2.2) is the characteristic equation ofy(2.3). Let (Xg, Xb) be
the characteristic roots of (2.2) whose existence was guaranteed by
: — AnD
Lemma 2.3. We decompose C by (Ag, o) as C=U@® S, e 0%¢ U, and

denote by HU the projection operator onto U.

, then for any e, 0 < e g (m-20)k;, we

Lemma 2.4, If h > —b
2coso

have

inf |me| > O,
$€9B(e)NK Ty
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where Ble) = {¢ € C: |¢] < €}.

We are now ready to show the existence of a nontrivial
periodic solution of (l.l) in -7 < u < m by the following theorem,

which is found in [3].

Suppose K is a cone (or a truncated cone) such that for any ¢
e K. If we let A

| oM ¢

= Xr(¢)(¢)’ ¢ € K, then A: K -+ K is a positive operator.

e K, there is a time 1(¢) > O such that x

Theorem 2.1. Suppose A is the same as defined above, A is
continuous, 1(¢) 2 h, ¢ € K, T and A take closed bounded sets into
bounded sets and the following conditions are satisfied:

(I) For any open bounded set GCC, 0 ¢ G,

inf |A¢| > O.
$¢€JGNK

(IT) If F is the set of positive eigenvectors of A, there is
an M > O such that ¢ € F, |¢| =M, Ap = p¢ implies u < 1.
(III) For any e > O,

inf || > O.
$€dGNK

Under these conditions, there exists a nontrivial periodic solution
of (1.1) with period greater than h. In (II), ¢ # O is called a

positive eigenvector if A¢ = p¢ for a positive operator A.

Among the assumptions of Theorem 2.1, the continuity of A is
given by the continuity of solutions for the initial conditions.
Also we have that t and A take closed bounded sets into bounded sets.
Furthermore, if 2cgsa < h < H(a), then (I) holds by Lemma 2.2, (II). _
holds for M > kpXs by Lemma 2.1, and (III) also holds by Lemma 2.4,

Hence we have the following theorem.

T _ < h < H(a), then there exists a nontrivial
2cosa

Theorem 2.2. If



periodic solution of (1.1) in -7 < u < 7, and its period is greater

than 2h.

Remark. In particular, for 6§ = 0.3 and h = 2, Ueda and his
colleagues have observed the existence of a nontrivial periodic
solution. We can conclude from Theorem 2.2 that there exists a
nontrivial periodic solution for § = 0.3, 1.81 g h g 2.45, and |§|

< 0.445, h = 2,

3. Existence\of a periodic solution of the second kind
Employing the following theorem, which is found in [3], we
show the existence of a periodic solution of the second kind for
(1.1), where x(t) is called a periodic solution of the second kind

if there exist X # 0 and T > 0 such that x(t+T) = x(t) + X for t 2 O.

Theorem 3.1. Suppose K is a cone (or a truncated cone), A is
positive with respect to K, is completely continuous and F is the
set of positive eigenvectors of A. If

(i) for any open set G(CC, O € G,

inf |A¢| > O,
¢€2GNK

(ii) there exists an M > O such that ¢ € F, |¢]| = M, Ad = u¢
implies p < 1,

(iii) there exists an open neighborhood H of zero, HCB(M),
such that ¢ € QHOF, A¢p = u¢ implies p » 1,
then A has a fixed point in KN(B(M)\ H).

First, consider equation (2.1) for 0 < § < 1. Let —%‘— 2a <

ggla) <% - a. For a fixed o and &= Egla), let

Kg={veC: y(-h)=g,, ¥(6) is nondecreasing on [-h,0], w(O);-;},
and ‘
€0 ‘
K={¢peC:¢=9¢~-t for some ¢ e Ky},
where ;“(e)*= v, -h £ 6 £ 0. Then K is a truncated cone. The following

lemma holds.
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- Lemma 3.1. There exist £y= £p(a) and 8p, O < §p< 1, such that
for €0§ § <1,

Eo+2'ﬂ' . 2 ) S TT+2£O
(3.1) _ T min( i) a—»co a, : ),
2(8+{1-62) 1+8 2(1+48)° 2(sin(gg+a)-3)
and
(3.2) 6(“—2&)(1—6)‘< o0 + (m-2a+8)8

T 38+m-373 NS
36+m-3 o(s+11-82)

Furthermore, if h satisfies
g0+2'ﬂ'
1+8

'n‘+2£0
» Blein(Egra)=s))

. mT+20-2C0S0

(3.3)
2(1+68)°

b
——————— < h < min(
2(8+¥1-62)

then any solution x(t, ¢) of (2.1) reaches Eg+tem in finite time

uniformly for ¢y e Ky. Moreover, m - 2a £ x(t, ¢) £ gp+ 2m for t5- h
St £ tpy, where tp= inf{t: x(t, §) = g4+ 2n}, and consequently

x, .. (8) is nondecreasing, and for some n = n(§, h) > 0 and kg,
t0+h
0 < kg < 1, sufficiently near 1, we have n g x(t0+h, V) - x(to, ¥) £
(m+284)k
_————E————-uniformly for ¢ e Kg.

o ’
For ¢ e Kand ¢ = ¢ + ¢ , let t(¢) = ty+ h, and let A: ¢ + §
g0+2
= xT(w) -z . Then, under the assumptions of Lemma 3.1, A satisfies

the assumptions of Theorem 3.1. Thus we have the following proposition.

Proposition 3.1. Under the assumptions of Lemma 3.1, (1.1) has a

periodic solution of the second kind.

Next, consider equation (1.1) for § > 1. Let x(t) be a periodic
solution of the second kind of (1.1), and let TI> 0 be the smallest

period. Then it is easy to see that x(t+T) - x(t) = 2pm for some

integer p. We consider the case p = 1. Then T must be less than %%T
because § > 1, and consequently it is sufficient to consider only
an
< ———.
h o1 Let

K, ={yeC: w(-h)=g, p(0) is nondecreasing on [-h,0], ¢(O)§§%},

and
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K={$peC: ¢=9-27 for some y € Kl}’
then K is a truncated cone. We have the following lemma.

Lemma 3.2. Let & > 1 in (1.1). Then any solution x(t, ) of

(1.1) is increasing and reaches %ﬂ-till the time %%in If h < IEE-+
_3112—53 then for kj, 0 < kp< 1, sufficiently near 1, (6-1)h <
4 (1+8) Sn

X(t0+h3 w) = X(tos IP)

A

2

If we define the mapping A similarly to the case 6 < 1, A
satisfies the assumptions of Theorem 3.1 by Lemma 3.2, and hence we

have the following proposition.

Proposition 3.2. Under the assumptions of Lemma 3.2, (1.1) has

a periodic solution of the second kind.

Remark. (3.2) is true for 8= sin%l, where 0.97hk < 64<0.975.
m a

(3.1) holds for a wider region of § than (3.2) for £5(a) = 5 -5
4. Stability of a constant solution
In this section, using a theorem of Yorke [6], we consider the
nonexistence of nontrivial periodic solutions of (1.1) for -m < u < 7
and the uniform asymptotic stability of the zero solution of (2.1)

when h is smaller than that in Theorem 2.2. Furthermore, we consider

the nonexistence of periodic solutions of the second kind.

Definition 4.1. We say O is uniformly stable for (2.1) if for
any n > O there exists a p = p(n) in (0, n)] such that for any ¢ £ C

we have for all t 2 O

|¢| < p implies [x(t, ¢)] < n.-

Definition 4.2. Let y > 0. We say O is uniformly asymptotically
stable with attraction radius y for (2.1) if

(i) 0 is uniformly stable,

(ii) there exists T = T(yl) for each yje (0, y) such that for
any solution x(t, ¢) of (2.1) With;|¢| Y |x(t0+s, $)| = %l'for
all s 2 T(y;).

8

kom uniformly for y e K,, where x(to, P) = =
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Consider a nonlinear one-dimensional differential-delay equation

(k.1) x(t) = F(t, x), t 2 0.

Let CB= {¢ e C: |¢] < B} and let F: fO, °°)xCB + R be continuous.
For ¢ € Cg, define M(¢) = max{0, sup ¢(6)}. The following theorem

can be found in [T7]. ~hz620

Theorem 4.1(Yorke). Let 8 > O and h > 0. Let F: [O, w)xCB + R be

continuous. Assume for some ¢ 2 O
(L.2) -cM(¢) £ F(t, ¢) s cM(~¢) for all ¢ e Cg.

(i) Assume ch g
stable.

. Then x(t) = 0 is a solution and is uniformly

nojw

(ii) Assume O < ch < %—and

(for all sequences tn+ » and ¢ns CB converges to a constant
(4.3

nonzero function in CB’ F(tn, ¢n) does not converge to O.
28
p

Then 0 is uniformly asymptotically stable, and if |¢| < , then

x(t) + 0 as t > =,
Remark. (i) and (ii) can be made more specific as follows [T].

If |¢] < %ﬁ, then the solution x(t, tg, ¢) is defined and

(L.4) .
satisfies |x(t, tg, ¢)] s %[¢] for all t 2 tg.
v(t) 1€ sup |x(s)| is a monotonic non-increasing function

, then V(t) »> 0.

njw

for t 2 ty, and if 0 < ch <

For equation (2.1), let f(x) = & - sin(x+a). Let y = -c{a)x be

tangential to the curve y = f(x) at the point (-£(a), f(-&(a))) for.

a% - o < -g(a) < -a. Moreover, let zj(a) =‘min(£(a), lg%é%ﬁ),
to(a) = min(g(a), 1-20), H(x) = sz (x # 0), and let K(0) = 2.

Corresponding to f(x), define
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f(-(m+20)k), x < -(w+20)k,
£1(x) =4 f(x), -(m+2a)k £ x = (m-2a)k,
f((m-2a)k), x > (m-20)k,
where O < k < 1. Then F(t, ¢) = fl(¢(—h)) is continuous and satisfies
(4.3) for any B > 0. Moreover, since condition (4.2) for F(t, ¢) =

fl(¢(—h)) is equivalent to
fl(x)’
é—C,X#O,

(4.6) -
we obtain the following proposition by applying Theorem L.1.

Proposition 4.1. (i) If h < H(zy(a)), then (1.1) has no

nontrivial periodic solution in -m < u < w.

2(m-2a)
5 bl

uniformly asymptotically stable with attraction radius y for (2.1).

(1iii) If h < min(H(z,(a), g%%%é%%%j), then (1.1) has no

periodic solution of the second kind.

Remark 1. If O < h<§zgga3 then for sufficiently small y > O,
0 is uniformly asymptotically stable with attraction radius y for (1.1).

l-sino =

(i1) If h < H(gp(a)), then for any y, 0 < y < 0 is

Remark 2. Since ooq S S m-20, we have gq(a) < tola) < (o)
and consequently H(zj(a)) 2z H(zs(a)). On the other hand, for any given
h>0, a, 0<acx 23 sufficiently near %3 satisfies conditions in (i)
and (ii), since lim H(go(a)) = =,

o0
2
Remark 3. Since we can take ¢ = Ei%%%i in (4.2) for f(x), if 0 < h <

3(a+l) l-sina .
2(sino+l)? . L0850 8
decreasing, if we let agcosayp= l-sinag, r4 0.555 < an< 0.556_< —, then
z1(a) = igiéﬁg-g a and consequently H(gy(a)) 2z H(a) = Ezznu for ags o < %u
Therefore, if 0 < h < 239 , then the condition in (i) holds for aps o < L

sina 2
, then the condition in (ii) holds for o 2 %u

then (i) and (ii) hold. Moreover, since £(a) > o and

Simi .
imilarly, if O < h < Ssina

/0
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