ORTHODOX SEMIGROUPS ON WHICH GREEN'S RELATIONS ARE COMPATIBLE, II.

Kunitaka Shoji and Miyuki Yamada

This paper is a continuation of the previous paper [11]. Krishna Iyengar [2] has shown that a regular semigroup is D-compatible if and only if it is a semilattice of bisimple semigroups. In this paper, the structure of bisimple orthodox semigroups, especially that of H-compatible bisimple orthodox semigroups, is clarified. Further, we investigate the structure of orthodox semigroups S on which some of the Green's relations \mathcal{H}_{S} , \mathcal{L}_{S} , \mathcal{K}_{S} and \mathcal{E}_{S} are compatible.

A semigroup S is said to be H [L,R,D]-compatible if the Green's H [L,R,D]-relation \mathcal{X}_{S} [\mathcal{L}_{S} , \mathcal{R}_{S} , \mathcal{R}_{S}] on S is a congruence.

In the previous paper [11], one of the authors has clarified the structure of H [L,R]-compatible orthodox semigroups. On the other hand, it has been shown by Krishna Iyengar [2] that a regular semigroup is D-compatible if and only if it is a semilattice of bisimple semigroups. Accordingly, it is obvious that an orthodox semigroup is D-compatible if and only if it is a semilattice of bisimple orthodox semigroups. In the first half of this paper, the structure of bisimple orthodox semigroups, especially that of H-compatible bisimple orthodox semigroups, will By using the results obtained in the first half, be clarified. we shall next investigate the structure of orthodox semigroups S on which some of the Green's relations \mathcal{A}_{ς} , \mathcal{L}_{ς} , \mathcal{R}_{ς} and \mathcal{D}_{ς} are The complete proofs are omitted and will be given in compatible. Throughout the whole paper, the set [the band] detail elsewhere. of idempotents of a regular [an orthodox] semigroup S will be denoted by Eg.

§ 1. H-compatible bisimple orthodox semigroups.

If f is a homomorphism of a regular semigroup A onto a regular semigroup B, then the collection $\{ef^{-1}: e \in E_{\mathbf{g}}\}$ of subsemigroups ef^{-1} $(e \in E_{\mathbf{g}})$ of A is called the <u>kernel</u> of f and is denoted by Ker f.

Let T be an inversive semigroup (that is, an orthogroup), and Γ an inverse semigroup. If a regular semigroup S contains T and if there exists a surjective homomorphism $\xi \colon S \to \Gamma$ such that

- (C1) $U \text{ Ker } \xi \equiv U \{ \lambda \xi^{-1} : \lambda \in E_{\Gamma} \} = T \text{ and }$
- (C2) the structure decomposition (see [7],[11]) of T is given as T \sim Σ { $\lambda \xi^{-1}$: $\lambda \in E_{\Gamma}$ },

then S is called a regular extension of T by Γ (see [11]).

The following results have been given by the previous papers [8] and [11]:

- A. An orthodox semigroup is a regular extension of a band by an inverse semigroup, and vice-versa.
- B. An H-compatible orthodox semigroup is a regular extension of a strictly inversive semigroup (that is, an orthodox band of groups; see [7],[11]) by an H-degenerated inverse semigroup, and vice-versa.

Now, let S be a regular extension of a stricly inversive semigroup T by an inverse semigroup Γ . By the definition of a regular extension, it follows that S \supset T and there exists a surjective homomorphism $\xi\colon S\longrightarrow \Gamma$ such that \bigcup Ker $\xi \equiv \bigcup\{\lambda\xi^{-1}:\lambda \in E_{\Gamma}\}$ = T and the structure decomposition of T is given as $T \sim \Sigma\{\lambda\xi^{-1}:\lambda \in E_{\Gamma}\}$ $\lambda \in E_{\Gamma}$. (That is, T is a semilattice E_{Γ} of the rectangular groups $\lambda\xi^{-1}$.)

For each $a \in S$, put $a\xi = \bar{a}$. Then, the following result can be proved by slightly modifying the proof of Lemma 1 of [9]:

Lemma 1. $a \not >_S b$ if and only if $\bar{a} \not >_{\Gamma} \bar{b}$.

By using Lemma 1 and the results A,B above, we can obtain the following theorem.

- Theorem 2. (1) A bisimple orthodox semigroup is a regular extension of a band by a bisimple inverse semigroup, and vice-versa.
- (2) An H-compatible bisimple orthodox semigroup is a regular extension of a strictly inversive semigroup by an H-degenerated bisimple inverse semigroup, and vice-versa.

Remark. A method of constructing all possible regular extensions of T by Γ for a given strictly inversive semigroup T and a given inverse semigroup Γ has been given by [10]; in particular for the case where T is a band, see also [8]. The structure of bisimple inverse semigroups has been also clarified by Reilly [4] and Reilly and Clifford [5]. Hence, we can know the gross structure of bisimple orthodox semigroups from Theorem 2,(1). A somewhat different construction of bisimple orthodox semigroups has been also given in Clifford [1], by extending Reilly's construction (see [4]) of bisimple inverse semigroups to bisimple orthodox semigroups.

By Theorem 2,(2) and Remark above, the problem of describing all H-compatible bisimple orthodox semigroups is reduced to that of describing all H-degenerated bisimple inverse semigroups.

Therefore, we shall investigate the construction of H-degenerated

bisimple inverse semigroups from now on.

Let E be a uniform semilattice, that is, a semilattice satisfying the following condition (C3):

(C3) For any e,f∈E, eE is isomorphic to fE; eE

fE.

Put $E \times E = \Delta$, and take an isomorphism $\xi_{(e,f)}$ of eE onto fE for each $(e,f) \in \Delta$. Assume that $F_{\Delta}(E) = \{\xi_{(e,f)} : (e,f) \in \Delta\}$ satisfies the conditions (3),(4) of (C6) of [11], that is, the conditions

- (C4) (1) ξ (e,e) is the identity mapping on eE for each e \in E.
 - (2) for (e,f), $(h,t) \in \Delta$,

 $\xi\left((fh)\xi_{(f,e)},(fh)\xi_{(h,t)}\right) = \xi\left(e,f\right)^{\xi}(h,t)^{\int (fh)\xi_{(f,e)}E}.$ Then, it is easily seen from [11] that $F_{\Delta}(E)$ is an H-degenerated inverse subsemigroup of the symmetric inverse semigroup $\mathscr{I}_{E}(*)$ on E. Further, we have $\xi\left(e,f\right)^{*\xi}(f,e) = \xi\left(e,e\right)$ and $\xi\left(f,e\right)^{*\xi}(e,f) = \xi\left(f,f\right)$ for any $(e,f) \in \Delta$. Hence, any two idempotents $\xi\left(e,e\right)$ and $\xi\left(f,f\right)$ are contained in the same $F_{\Delta}(E)$ -class. This implies that $F_{\Delta}(E)$ is bisimple.

Remark. This result is closely related with Theorem 3.2 of Munn [3].

Now, we have the following main theorem.

Theorem 3. Any H-degenerated bisimple inverse semigroup is isomorphic to some $F_{\Lambda}\left(E\right)$ constructed as above.

§ 2. Relationship between Green's relations; and some remarks.

By using Krishna Iyengar [2] and [7],[11], firstly we have the following theorem which shows the structure of orthodox semi-

groups S on which some of the Green's relations $\mathcal{H}_{_{
m S}}$, $\mathcal{L}_{_{
m S}}$, $\mathcal{R}_{_{
m S}}$ and $\mathcal{D}_{_{
m G}}$ are compatible.

Theorem 4. Let S be an orthodox semigroup.

- (1) If S is L [R]-compatible, then S is D-compatible.
- (2) If S is both L-compatible and R-compatible, then S is H-compatible.
- (3) S is both H-compatible and L [R]-compatible if and only if S is a strictly inversive semigroup in which the set E_S of idempotents is a right [left] semiregular band (that is, a band satisfying the identity xyzx = xyzxyxzx [xyx = xyxzxyzx]).
- (4) S is both H-compatible and D-compatible if and only if S is a semilattice of H-compatible bisimple orthodox semigroups and the union of maximal subgroups of S is a strictly inversive subsemigroup.
- Remarks. 1. An orthodox semigroup which is a semilattice of H-compatible bisimple orthodox semigroups is not necessarily H-compatible. For example, an inversive semigroup (that is, an orthogroup) S is a semilattice of rectangular groups (accordingly, a semilattice of H-compatible bisimple orthodox semigroups), but not necessarily H-compatible. S is H-compatible only when S is strictly inversive.
- 2. An H-compatible orthodox semigroup is not necessarily D-compatible. Let A,B be two sets such that $A \cap B = \square$ and |A| = |B| (where |X| means the cardinality of X). For X,Y = A or B, let $H_{X,Y}$ be the set of all 1-1 mappings of X onto Y. Put $H_{A,A} \cup H_{B,B} \cup H_{A,B} \cup H_{B,A} \cup \{0\}$ (where 0 is a symbol which is different from any element of $H_{X,Y}$, X,Y = A or B) = S. For $\delta, \xi \in S$, define the

product $\delta_*\xi$ as follows:

H-compatible.

$$\delta * \xi = \begin{cases} 0 & \text{if } (1)\delta \in H_{A,A}, \xi \in H_{B,B} ; (2) \xi \in H_{A,A}, \delta \in H_{B,B}; \\ & (3) \delta, \xi \in H_{A,B} \text{ or } \delta, \xi \in H_{B,A}; \text{ or } (4) \delta = 0 \text{ or } \xi = 0, \\ & \text{resultant composition,} & \text{otherwise} \end{cases}$$

Then ,in the resulting system S(*), the \mathcal{B}_S -classes are $H_{A,A} \cup H_{B,B} \cup H_{A,B} \cup H_{B,A}$ and $\{0\}$. On the other hand, the \mathcal{H}_S -classes are $H_{A,A}$, $H_{A,B}$, $H_{B,A}$, $H_{B,B}$ and $\{0\}$. Now, we can easily see that this semigroup S(*) is H-compatible but not D-compatible.

- 3. The full transformation semigroup \mathcal{J}_X on the set $X = \{a,b\}$ is an orthodox semigroup which is D-compatible but not H-compatible.
- 4. A band B is H-compatible but not necessarily L-compatible [R-compatible]. It has been shown by [6] that B is L [R]-compatible if and only if B is a left [right] semiregular band.
- 5. Consider \mathcal{J}_X above. \mathcal{J}_X consists of four transformations $\begin{pmatrix} a & b \\ a & b \end{pmatrix}$, $\begin{pmatrix} a & b \\ b & a \end{pmatrix}$, $\begin{pmatrix} a & b \\ a & a \end{pmatrix}$ and $\begin{pmatrix} a & b \\ b & b \end{pmatrix}$; that is $\mathcal{J}_X = \left\{ \begin{pmatrix} a & b \\ a & b \end{pmatrix}$, $\begin{pmatrix} a & b \\ b & a \end{pmatrix} \right\}$, $\begin{pmatrix} a & b \\ b & a \end{pmatrix} = R_1$ is a subgroup of \mathcal{J}_X and the set $\left\{ \begin{pmatrix} a & b \\ a & a \end{pmatrix}, \begin{pmatrix} a & b \\ b & b \end{pmatrix} \right\} = R_0$ is a right zero semigroup. Further, \mathcal{J}_X is a semilattice $\{0,1\}$ of the \mathcal{K}_X -classes R_0 and R_1 . Hence, \mathcal{J}_X is R-compatible but not H-compatible. Similarly, there exists an orthodox semigroup which is L-compatible but not
- 6. A bicyclic semigroup is both D-compatible and H-compatible but neither L-compatible nor R-compatible.
- 7. A left semiregular band B is both H-compatible and L-compatible but not necessarily R-compatible. In fact, B is R-compa-

tible if and only if B is a regular band. Similarly, there exists an orthodox semigroup which is R-compatible but not L-compatible.

Problem. Determine the structure of H-compatible regular semigroups.

REFERENCES

- 1. Clifford, A.H.: The structure of bisimple orthodox semigroups as ordered pairs, Lecture Note, Tulane University, 1972.
- 2. Krishna Iyengar, H.R.: Semilattice of bisimple regular semigroups, Proc. Amer. Math. Soc. 28 (1971), 361-365.
- 3. Munn, W.D.: Uniform semilattices and bisimple inverse semigroups, Quarterly J. Math. Oxford (2) 17 (1966), 151-157.
- 4. Reilly, N.R.: Bisimple inverse semigroups, Trans. Amer. Math. Soc. 132 (1968), 101-114.
- 5. Reilly, N.R. and A.H. Clifford: Bisimple inverse semigroups as semigroups of ordered triples, Can. J. Math. 20 (1968), 25-39.
- 6. Yamada, M.: The structure of separative bands, Dissertation, Univ. of Utah, 1962.
- 7. _____: Strictly inversive semigroups, Bull. of Shimane Univ. 13 (1964), 128-138.
- 8. _____: On a regular semigroup in which the idempotents form a band, Pacific J. Math. 33 (1970), 261-272.
- 9. _____: 0-simple strictly regular semigroups, Semigroup Forum 2 (1971), 154-161.
- 10. _____ : On regular extensions of a semigroup which is

- a semilattice of completely simple semigroups, Mem. Fac. Lit. & Sci., Shimane Univ., Nat. Sci. 7 (1974), 1-7.
- 11. _____: Orthodox semigroups on which Green's relations are compatible, I. H-compatible orthodox semigroups, to appear.

Faculty of Literature and Science
Shimane University
Matsue