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TOPICS ON OPEN PRIME IDEALS IN COMPACT SEMIGROUPS

Katsumi Numakura

By a gsemigroup S we mean an abstract semigroup which is also a
Hausdorff space, such that ab is a continuous function of a and b,

a, b being elements of S. An ideal I of S is said to be

a completely prime ideal if xye€ I implies xe&€ I or y € I,

"a prime ideal if xSy I implies x€ I or y ¢ I, .

a completely semiprime ideal if x2€ I implies x¢& I,

and

a semiprime ideal if xS5x ¢ I implies x¢& I.

In the theory of compact semigroups, the ideals which are open
completely prime, open prime, open completely semiprime or open semi-
prime, play an important role at various points, and these ideals have
been treated by several authors ([2], [3], [4], [5], [6], [7] and [8]).
In this note, we shall give two topics concerning these ideals in a

compact semigroup.

Throughout the note we shall use the notation and terminology of

A. B. Paalman-de Miranda [5].

§1. We list here some definitions and known results which will

be used later.

Definition 1.1. Let I Dbe an ideal of a semigroup S. An
idempotent e of S is said to be I-primitive if eéf I and e is

the only idempotent in eSe\UI.
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Definition 1.2. An ideal Q of a semigroup S 1is said to be
a g-ideal if @ is expressed as an intersection of open prime ideals

of S.

Proposition 1.3 ([3; Theorem 2]). Let S be a compact semigroup.
If P is a proper open prime ideal of S, then P has the form
P = Jo(s\\S) for some idempotent e. Conversely, for each idempotent

e, Jo(8\e) 1is either an open prime ideal of S or the empty set.

Proposition 1.4 ([3; Lemma 9]). Let S ©be a semigroup and a,

be s. Then Jo(s\a) C Jo(s\p) iff J(a) C J(b).

Proposition 1.5 ([k4; Theorem 2.9]). Let S be a compact semi=
group and let Q Dbe a g-ideal of 8S. If e 1is an idempotent of S,
then all of the following conditions are equivalent

(i) e 1is a Q-primitive idempotent.

(ii) SeS is a minimal ideal not contained in Q.

(iii) Every idempotent in SeS\\@ is a Q-primitive idempotent.

(Let A and B be ideals of a semigroup S. A isussaid to

be a minimal ideal not contained in B, if A is a minimal member

among the ideals of S which are not contained in B.)

Proposition 1.6 ([L; Theorem 2.7 and Lemma 3.10]). Let Q Dbe
an open semiprime ideal of a compact semigroup S. Then Q 1is a

g-ideal. Moreover, if M 1is an ideal of S which is not contained

in Q then M has a Q-primitive idempotent.

§:2. In what follows, S will'denote a compact semigroup.

An ideal of a semigroup which is completely prime is prime, but
the.converse is not true. In the case of normal semigroups (a semi-
group S 1is said to be normal if ‘xS = S8x for every x:e:S), however,

these concepts coincide.



We are naturally led to the problem : Is there any useful condition

under which open prime ideals of S are completely prime ? In

-

this section we shall discuss about this problem.

Lemma 2.1. Let P be an open prime ideal of S, and let e
be an idempotent of S. Then e is P-primitive iff P = Jo(é\\g).
Ezggﬁ, Assume that e 1s a P-primitive idempotent. Let
f be an idempotent of 5 such that P = Jo(S\{f). Since e¢ P,
we have JO(S\\f) C JO(S\\g). From this it follows that SfS  SeS
(see Proposition 1.h4). As SeS 1is a minimal ideal not contained

in P (see Proposition 1.5), f f P and SfS SeS dimply that SfS
-

= SeS. Using Proposition 1.4 again, we can conclude that JO(S\\f)

Jo(8\e)-

Conversely, assume that P = JO(S\\g). It is clear that every

ideal M of S which is properly contained in SeS does not contain
e, and therefore M C P. Hence SeS 1is a minimal ideal not
contained in P. Using Proposition 1.5, we obtain that e is a

P-primitive idempotent.

Lemma 2.2. Let Q be a g-ideal of S and e a Q-primitive

idempotent. Then Q /\ SeS is a unique maximal ideal of the semi-
group = SeS.

Proof. Let us set Q¥ = Q M\ SeS. It is obvious that Q¥
is a proper ideal of the semigroup SeS. Assume that M¥ is an
ideal of the semigroup SeS such that M¥ d; Q¥. We shall show

that M¥ = SeS.

Let M denote the set M¥ \ Q¥ ; M is an ideal of the semigroup
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SeS which properly contains Q¥. The set SMS 1is an ideal of the
semigroup S which is contained in SeS. Since SeS 1is a minimal

ideal not contained in Q, it follows that either SMS(C Q or SMS

= SeS. In the former case, we have SMS C Q¥ ¢( M, and so M is
an ideal of S. As Q is a semiprime ideal of 8, M3 . 8MSs cQ
implies that M Q. This contradicts to the fact that Q¥ is
properly contéined in M. In the latter case, we have

M D (SeS)M(Ses) = (Se)(8Ms)(esS) = (Se)(Ses)(eS) D Ses,

and therefore M = SeS. From this it follows that eeg M¥, because

e¢ Q¥. " Hence we obtain
M¥ > (SeS)e(SeS) D SesS.
Thus M¥ = SeS.

Lemma 2.3. Let Q be a g-ideal of S, and let e be a Q-

primitive idempotent. If P is the open prime ideal such that
P =J.(8\e), then P/\ SeS = Q /N SeS.
Proof. By Lemma 2.1, e 1is a P-primitive idempotent. There-

fore, by Lemma 2.2, P /\ SeS is a unique maximal ideal of the semi-

group SeS. On the other hand, Q /\ SeS is also a unique maximal
ideal of  SeS. Hence we have P /\ SeS = Q /\ SeS.
Theorem 2.k4. Let P De an open prime ideal of S, and let us

suppose that P has the form P = JO(S\\g), where e is an idempotent.
Then all of the following conditions are equivalent
(1) P is a completely prime, ideal.

(2) SeS\\? is a subsemigroup of S.
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(3) The product of two P-primitive idempotents does not lie in
Pp.

(4) ae SeS\P implies a2e SeS\P.

(5) SeS\P is the disjoint unioun of groups.

(6) TFor each element of Seé\\? , there exists a two-sided
identity.

Proof. From the fact that P /\ SeS is a maximal ideal of the
semigroup SeS, equivalency of the conditions (2) —~ (6) is an

immediate consequence of Corollary 2 to Theorem 1 in [1].

It is evident that (1) implies (2), (3) and (4). We shall
show that (2) implies (1). Let a and b be elements of S such
that a, be% P. Since P 1is a prime ideal of S and e ¢ P,
there exist x, y& S such that exa ¢ P and bye ¢ P. As the

elements exa .and bye are contained in SeS\\P, (2) implies that
(exa)(bye)é% P. This shows that ab # P, so that P is a completely

prime ideal.

Theorem 2.5. Let Q be a g-ideal of S and let e be a Q-
primitive idempotent. If Q 1is completely semiprime, then the

open prime ideal JO(S\\e) is completely prime.

Proof. We denote JO(S\\g)' by P, and let a be an arbitrary
element of SeS\\P. We shall show that agez SeS\\P. As Q

1s completely semiprime and aei Q, we have a2¢ Q, that is,

a2 = SeS\\g. From Lemma 2.3 we can conclude that SeS\\Q = SeS\\?,
and so a2 € SeS\\f. Therefore, P 1s completely prime by Theorem
2.k,
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&3. Let P be a prime ideal and I an ideal of a semigroup.

P 1is said to be a minimal prime ideal belonging to I, if I ( P,

and 1f there is no other prime ideal containing I and properly
contained in P. |

It was shown in [4] that an open semiprime ideal Q of a compact
semigroup S is an intersection of minimal prime ideals belonging to

Q, each of which is necessarily open (see [4; Theorems 3.5 and 3.12]).

Remark. Let I ©be an open ideal of a compact semigroup S.
If P' is a prime ideal of S contaihing I, then there exists a
minimal prime ideal P Ybelonging to I such that P C P'.

Moreover P is necessarily open.

Now we ask the question : Is an open semiprime ideal of S

expressible as an intersection of a finite number of minimal (open)

prime ideals belonging to it ¢ The answer is "no" , as the following

example shows.

Example 3.1. Let S ©De the set consists of rational numbers
0, #1/n3n=1,2, ++++++ :8={0, #1/n:n=1,2, ===+ | .
S 1is a compact Hausdorff space as a subspace of the real line with

the usual topology.

We write e, in place of vl/n {n=1, 2, -+ ), £, in place
of -1/n (n=1,2, -*++ ), and ey, in place of O. Define a
multiplication on S in the following way :

ei2 =e for 1=00,1,2, =",

ejey = £, for i #3 and i, J =00, 1, 2, *ccerr,



and

where %k = min(i, J).

gl f, 13 ), €0 ey, e3 ep ey
\_________\\//——~—————//
Q

It is not difficult to see that the multiplication defined above
satisfies the associative law, and so with this multiplication S
is an (abstract) semigroup.

We can easily see that the multiplication defined on S 1is
continuous with respect to the topology. Thus S becomes a
compact semigroup.

We denote by Q the set { fpo,:n=1, 2, ceen } . It
can be easily shown that Q 1s an open semiprime ideal of the semigroup
S. All the sets of the form S\\?i ,i= 00,1, 2, cerv-- , are
minimal prime ideals‘belonging to Q, and there is no minimal prime
ideal belonging to Q except them. It is obvious that the
intersection of any finite number of ideals of the form S\\Si does
not coincide with Q. From this we see that @Q can not be expressed
as an intersection of a finite number of minimal prime ideals belong-

ing to Q.

We shall now consider the condition under which an open semiprime
ideal Q of S 1is expressible as an intersection of a finite number

of minimal prime ideals belonging to Q.

Lemma 3.2. Let Q be an open semiprime ideal of = S. Iif
f 1is an idempotent of S not contained in Q, then there exists a

Q-primitive idempotent e such that ef = e = fe.
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Proof. By Proposition 1.6, there exists a Q-primitive idempotent

g 1in SfS. From g e SfS, g can be written in the form g = ab,
where a € gSf and befSg. Let us set e = ba. We shall
show that e 1is one of the required idempotents. Firstly,

e? = b(abla = bga = ba = e,
that is, e 1is an idempotent. Secondly,

fe = f(ba) =ba=e and ef = (ba)f = ba = e.

And lastly, from SeS = Se?s = Sb(ab)aS ¢ SabS = SgS = Sg2S = Sa(ba)bs

C SbaS = SeS, we obtain §SeS = SgS. Using Proposition 1.5, we can

conclude that e is a Q-primitive idempotent.

Theorem 3.3. Let Q be an open semiprime ideal of S. If
there exists an infinite number of minimal (open) prime ideals belong-
ing to Q, then Ey a (EQ2 N Q) # P, where EQ is the set of all
Q-primitive idempotents and EQ2 A\ Q denotes the topological closure

of the set Eg2 /N Q.

Proof. Let { P, : L€ /\_} be the collection of all minimal
(open) prime ideals belonging to Q. It is obvious that each P,
is properly contained in S. Of course we a;sumé that Ex # Pﬁ
if o # ﬁ . By the assumption the index set A is infinité.

To each o € /\ s choose an idempotent such that R&

€
= JO(S\\?& ). Then 'ed_ is a Q-primitive idempotent, because P

is a minimal prime ideal belonging to Q, so that the correspondence

I — e, is a one-to-one mapping from /\  into -EQ. There-
fore, the set { ey oL € I\ } is an infinite 'subset of EQ.
‘Let E .be the set-of all idempotents of S. - It is_we;l-known



that E 1is a closed subset of 8. As Q 1is open, E\\g is also a

closed subset of 8, and so it is compact. The set { ey ¢ X € /\_%

has a complete limit point (point d'accumlation maximée) f in E\\g,
since . this is an infinite subset of the compact set E\\@. By
Lemma 3.2 there exists a Q-primitive idempotent e such that ef = e
= fe.

We shall show that the idempotent e 1is containdd in EQ2/\ o .
Let U be an arbitrary neighborhood of e in 8. From ef = e
there exists a neighborhood V of f such that eV ¢ U. As T
is a complete limit point of the set { ey : A€ z“xf, the set
vm {ec* : A€ /\f is an infinite set. Therefore, there exists an
e, » ¥ € /\, in V suchthat P, =Jo(S\e,) is different from
the open prime ideal JO(S\\g). From JO(S\\?U ) # JO(S\\g) it
follows that Se,S # SeS. Since both Se,S and SeS are minimal

ideals not contained in Q, the product (SeS)(SepS) is contained in

Q. Hence ee, € Q, and so ee),e,EQ2 M\ Q. On the other hand,
we have ee, & eV C U. Therefore we obtain U N (EQ2 ma) #g.
As U 1is taken arbitrary, we have e e EQ2 M Q . This completes
the proof.

As immediate consequences of Theorem 3.3 we obtain the following

corollaries. We denote by E the set of all idempotents of 8.
Corollary 3.k, Let Q ©be an open semiprime ideal of S. It

E2 =EFE and if E N\ Q is a closed subset of S, then there exists only

a finite number of minimal (open) prime ideals belonging to Q.
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Corollary 3.5 ([8 :Theorem 17]). Let Q be an open semiprime
ideal of S. If Q 1is closed, then there exists only a finite

number of minimal (open) prime ideals belonging to Q.

Corollary 3.6. If S 1is a compact N-semigroup iﬁ which
E2 = E holds, then the radical is the iﬁterseétion of a finite
number of open prime ideals.

(A semigroup S with O is said to be an N-semigroup if the

set N of all the nilpotent elements is an open subset of S.)

Proof. It is well-known that the radical Jy(N), the largest
ideal contained in N, of S 1is an open semiprime ideal. Therefore

the corollary is a consequence of Corollary 3.4, because E N\ J,(N)
={o}
2

Problem. Is Corollary 3.6 valid without the assumption E~ = E ?
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