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ON DIVISOR THEORY IN AN ARCHIMEDIAN LATTICE-ORDERED SEMIGROUP
Dedicated to Emeritus Professor Mchio Nagumo on his 70th birthday
KENTARO MURATA and KUMIE SHIRAI

The main purpose of this note is to consider
a divisor theory of lattice-ordered semigroups (abbr.
l1-semigroups), and to show that an l-semigroup S is
Artinian if and only if the cone of S has the divisor

theory.

1. Introduction. Let L be an l-semigroup (not necessarily
commutative), and let :E; be any multiplicatively closed subset
of L such that for each element a &L there is an element x & N
with x a. Let A be a commutative l-semigroup with unity quantity
g such that (1) £ is the gréatest element of A , (2) A contains
primes and (3) each element of A\ is uniquely decomposed into
primes apart from its commutativity.

An l-semigroup epimorphism f: awr>£f(a) from L to A is called
a right divisor theory of L if it satisfies the following conditions:

(1°) If for x, ye>,, f(x) is divisible by f(y) in A , then

X is divisible by ¥y on the right-hand side in L, i.e. if there is
an element Y& /\ such that f(x) =¥f(y), then there is an element c
€ L such that x = cy.

(2°) Z(a) = Z(pf) impliesot=f , where 2. () is the set of
the elements of xe€ 2>, such that f(x) is divisible by NED..

A left divisor theory is defined analogousely.

A main purpose of this note is to prove the following

THEOREM. Let S be a conditionally complete lattice-ordered
semigroup (abbr. cl-semigroup) with unity quantity e. Assume that
the cone C = {aES; a se} satisfies the ascending chain condition
in the sense of quasi-equality (cf. DEFINITION 3 ) and has a join-
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generator system . such that (a) 3, is closed under multiplication
(b) every element of >, is invertible in S and (c) every element s €
S is written as s = ax”1= y"b where a,beC and x, ye>.. Then the
following conditions are equivalent:

(lr) C has a right divisor theory.

(ll) C has a left divisor theory.

(2) C is archimedian.

(3) S is Artinian.

Let G be the group generated by ». in S. Then S is a quotient
semigroup of C by G A C in the sense of [2], where A will denote the
intersection. The cone C of S is said to be archimedian, if whenever
z"x <e for n = 1,2,...(x€2 , z€G) imply z < e. Since 2% e &
2" < X <> xzns; e, there needs no distinction of "right" and "left"
for archimedesness. An Artinian l-semigroup is considered in the
next section.

2. Artinian l-semigroups. Let S be a cl- semigroup whose cone
C has a join-generator system > with the conditions (a), (b) and
(c) in the theorem mentioned above. .

LEMMA 1. The group G generated by 2, in S is a join-generator
system of S.

Proof. The any element a¢ S there is an element er:such that
axe€ C. That ax = sup N for a subset N of ES . Hence we have a =

t = {ux-1; ueN}. This means that

(sup Nx-1 = sup(Nx”) where Nx~
G is a join-generator system of S.

LEMMA 2. For any two elements a and b of S, X(a,b) = {ELEG; ub
<a} is non-void. The set F(a,b) = {ses: sb < a} has an upper
bound, and sup F(a,b) = sup X(a,b).

Proof. Take an element x € G such that x < a, and take yeZ
such that yb < 'e. Then putting u = xy we have ub < a. It is easy

4'

to see that av™' 1is an upper bound of F(a,b) for any ve G with v=<

b. Let s = cx~! be any element of F(a,b) where ce€C, xeZ, ; and

put J = {zez; z,sc}. Then since zx~!b gcx"1b = sb € a and zx'4
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€ G, we have s = cx—1 = (sup J)x*’ = sup(Jx") < sup X(a,b). Hence

sup F(a,b) < sup X(a,b). The converse inequality is evident.
DEFINITION 1. a/b = sup F(a,b) is called a right residual of

a by b.
LEMMA 3. If a€S and uegG, then a/u = au=l 1In particular e/u

Proof. There is a subset A of G such that a/u = sup A. Then
for any z€ A we have zu < a, 2z gau'1, a/u éau". The converse
inequality is evident.

The residual has thr following properties:

(1) a/(bc) = (a/c)/b.

(2) (inf A)/b = inf { a/b; a € A}, if either inf A .or the
right-hand side exists.

(3) a/(sup B) = inf { a/b; b € B}, if either sup B or the
right-hand side exists.

It is clear that U(a) = {ue€G; a < u} is non-void for any a€sS.

DEFINITION 2. a* = inf U(a) is called a closure of a. a is
said to be closed if a* = a.

The following prdperties are immediate:

(4) a < a*.

(5) a<b implies a* < b¥*.

LEMMA 4. If a is closed, then a/b is closed for any b € S.

Proof. Let b = sup B for a subset B of G. Then since a =
inf U(a) we have a/b = inf U(a)/sup B = inf { u/v; ue€U(a), ve€B} =
inf { uv-'}>= inf U(a/b) 22 a/b (by (2),(3) and LEMMA 3). Hence we
obtain ‘a/b = inf U(a/b) as desired. '

We have the following properties:

(6) a* = e/(e/a).

(7) e/a = e/a*,.

(8) a** = a*.
(9) a*b* < (a*b*)* = (ab)*.
(10) (sup A)* = sup(A*)*, if either sup A or sup A* exists,

where A* = {a*; a€A}. 1In particular (a\J b)* = (a* U b*)*.
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(11) (inf A*)* = inf A*, if inf A%* exists. 1In particular
(a* ™ b*)* = a* N b*.
We define an operation ", " by a*eb* = (ab)*.

(12) (sup A)*eb* = (sup(A*ob*))*, b*o(sup A)* = (sup(b*o A¥*))*,
if sup A exists,

Proof. Ad (6): For any u € U(a) we have e/a=e/u = u",
e/ (e/a) < e/u“1 = u. Hence e/(e/a) < inf U(a) = a*. Conversely
since a = sup A for a suitable subset A of G, we have x~1=¢e/x =
e/a for any x€ A. Hence x = e/x"1 = e/(e/x) < e/(e/a) and hence
a = sup A <e/(e/a). Thus we obtain a* << e/(e/a) by LEMMA 4 and (5).
Ad (7): By (6) we have e/a* = e/(e/(e/a)) = (e/a)* = e/a. The
converse inequality is evident. (8) is immediate by (6) and (7). j
Ad (9): Since e/(ab)* = e/(ab) = (e/b)/a = (e/b*)/a = e/(ab*), we
have (ab)* = (ab)** = e/(e/(ab)*) = e/(e/(ab*)) = (ab*)*. Now we
can define left residuals and argue symmetrically as above. If ue€gG
then ua £ e&» a <u~'«s aug e. Hence we have e/a = a\e, the
left residual of e by a. This yield (ab)* = (a*b)*, and the identity
of (9) holds. (10), (11) and (12) are checked easily.

DEFINITION 3. Two elements a, b€ S are said to be quasi-equal,
if a* = b*, In symbol: a ~ b.

(13) a~b implies e/a = e/b, and conversely.

(14) a* v a.

(15) a*~_ ¢ implies a* » c.

‘The above three are immediate. Put S* = {s*; sesS}, and define
a* \/ b* {a* U b*)* = (auUub)*, a* N\ b* = (a* "N b*)* = a* M\ b* and
a* A b* (a f\b)*. Then by using (8) ~ (12) we can show that (s*,°,
V:/\) 1is cl-semigroup, and similarly for (S*,o, \V,A).

DEFINITION 4. If the semlgroup (S*,o )is a group, S is called

an Artinian l-semigroup [3].

We can show that if g jigArtinian, (S*,9¢, \/, A) is an cl-group.
Hence (S*, 0 ) is a commutative group, and (S*,\/, A) 1is a distributive
lattice. In this case e is maximally integral (cf. p, 12 in [1]).

For it can be shown that C is archimedian if and only if the above
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two meet operations coinside (cf. pp 13-14 in [1]).

3. Proof of THEOREM. (lr)=>(2); Let (C, A, £) be a given
divisor theory of the cone C of S, and let H be the restricted direct
product of infinite cyclic groups, each of which is generated by a
prime divisor in /\. Then it can be show that f: C —> A extends
to a map f: S —>H by f: cz™ r———)f(c)f(z)“'1 where cz-1e€ s, cec, ze€
> f(cz=!) does not depend on the choice of the fractional repre-
sentations.

Suppose that xu" < e, x €2, , u€G for n = 1,2,..., and let
£(x) = T ... LY o AN AL>0), £(w) = AT Sl LT T
(/u: > 0 or <« 0) be the prime factorizations in H, where Tyreear T,
are the common prime divisors. The since £f(xc™) € A we have
Ai+ n/ai> 0 (i=1,..., r) and n//j>0 (j = r+l,..., t) for all
positive integers n. This implies/ui>0 for i=1,..., r,...,t.
Hence we have f(u) < f(e), f(u)€ A . Since u is written as u = yz'4
for some y, z E‘Z , we have y = uz, f{y) = £(u)f(z). BY using the
condition (1°) we can choose an element c € C such that y = cz. Thus
we obtain u = ¢ < e as desired.

(2) = (3): Let a be an arbitrary element of S*, and let b =
az€C, z€2, . Then since e/b 2 e, we have b* = e¢/(e/b) < e/e = e
Hence we obtain aoz = b*e C* = {c*; ceC} = S*A C. Thus in order
to prove that (S*, o ) is a group, it is sufficient to show that
every element of C* is invertible with respect to the operation "o".
Let a€ C*, and let u€G be an element such that a(e/a) < u. Then

u"a(e/a) < e, ula<e/(ef/a) = a* = a. Hence we have a <ua, a s
u"a for n = 1,2,.... If we take an element x €%, such that x € a,
then x éuna. Hence u "x <a<e forn=1,2,... This implies
u-!'< e, e <u. Thus we get e < inf U( a(e/a)) = (a(e/a))*Le* =e.
We obtain therefore ao(e/a) = e. ‘

(3)=> (1_): Suppose that S is Artinian. Then (S%,e¢, V,A) is
r

cl-group and so (S*,o,\/,A) is commutative 1- group. For an element

p* of S*, p* is irreducible if and only if p* is prime. Since C
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satisfies the ascending chain condition in the sense of quasi~-equality,
each element of C* is uniquely decomposed into primes apart from its
commutativity. Now we show that (C,C*,x) is a divisor theory of C.
Suppose that x* = a* y* for x,y € 2 and a* &€ C*. Then since x* = x,
y* = y we have x = a*ey, xy~! = xoy ~! = a*, x = a*y. This shows
that the condition (1°) holds for C. Let 3 (a*) be the set of the
elements x €2 which are divisible by a*, i.e., x <a*. If 3 (a¥)

2. (b*) we obtain a* = sup> (a*) = sup$ (b*) = b*. That is, the
condition (2°) holds for C. B

Similarly we can show the implications: (ll)@(Z)%H)é(ll) .

4. Uniqueness for divisor theory. Let (L, ,f) be a (right)
divisor theory of L. An element K is called a principal divisor,
if there is an element x €> such that < = f£(x). It is easily shown
that 2.(®) is not vacuous for each divisor X .

UNIQUENESS THEOREM. For any two right divisor theories (L,A/£)
and (L, |7,9) of L there exists an isomorphism ¢ from A to | ,
under which the principal divisors in A\ and in |7 correspond.

Proof. We shall show first that for each prime T €A there is
a prime fe€}” such that I (f) € >.(i). For, if not, there is a
prime T &/\ for which there is no prime feJ with S (f )< =(10).
Take an element x € 2, (7T), and let g(x) = ﬁ f,n” be the prime-
factorization of g(x) in [ . Then since each Z‘(Pi) is not ‘contained
in 2,(T), we can choose x; which is contained in Z(f ) ‘and not
contained in 2,(7C). Hence there are Y € [ such that g(x )y FiYi

for i =1,...,n. Then we have <3(fo1 1Q") = g(x)T , where b’=
K&‘--- X'&’” . Hence by (1°) xf'... x,™ is divisible by x on the
rlght -hand 51de in L, hence f(x*‘ ceeX, o } is divisible by f(x), and

hence f(xl) <o E(xy )*" is divisible by TC . ThereforeS.(TC) contains
some x., which is a contradiction. Symmetrically for the prime fe[’,
there is a prime T € A such that (1) < 3, (P).

. Next we show that 7T =7. Since A is a semigroup with the
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unique factorization theorem, we have TWT % . By using (2°) we
can see that J(ww’) is strictly contained in 3 (7C) and hence in

>. (). Then we can take an element y € 2, such that f(y) is
divisible by W' and not divisible by /. If T %W, f(y) is
divisible by T’ , since f(y) is divisible by T .- This is imposible,
We have therefore W=7/, 3(7) = Y(P). By using (2°) we can

see easily that for each prime [T€/\, the prime fel” with Z, (f)

2. () is uniquely determined. Hence we can define the map ? : 7C
— f7= ?(7C) It is evident that ?’ extends uniquely to an isomor-
phlsm from A to 7.

In order to prove the last part of the theorem we suppose that
f(x) is exactly divisible by'rk. Since 2]7[) is, by (2°), strictly
contained in 2, (L), we can choose an element X such that f(xo) =
T and & is not divisible by 7. . Hence again by (2°) we can take
an element u which is contained in J,( O(k) and not in > ( Ko(k) . Then

of course gf{u) 1s not lelSlble by ?(‘C) Since f(xu) = f£(x)£f(u)

=7[(;(<ﬁ— (17:.0() 5— f(xo) @ = f(xg)ﬁ’ for some (SGA , we get xu
= bxo for some be L. Hence we have g(x)g(u) = g(x ) g(b) On the

other hand since g(x ) is divisible by ? UL) and g(u) is not divisi-
ble by T(]L), g(x) is divisible by $W7C) By a symmetrical argu-
ment we can show that f(x) is exactly divisible by‘mﬁ if and only if
g(x) 1is exactly divisible by ff(NL)k. This completes the proof.

COROLLARY 1. Suppose that S is an Artinian l-semigroup, and

C the cone of S. Then the divisor theory (C,C*,x) is uniquely

determined apart from isomorphism.

COROLLARY 2. S and C are as same as in Corollary 1. Assume
that the ascending chain condition holds for elements of C, and
any prime element is maximal (in C). Then S forms a commutative
l-group. )

Proof. It can be proved that quasi-equality implies equality,
which is similar to the proof of Theorem 2.6 in [1].
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