## ON DIVISOR THEORY IN AN ARCHIMEDIAN LATTICE-ORDERED SEMIGROUP

Dedicated to Emeritus Professor Mchio Nagumo on his 70th birthday

## KENTARO MURATA and KUMIE SHIRAI

The main purpose of this note is to consider a divisor theory of lattice-ordered semigroups (abbr. 1-semigroups), and to show that an 1-semigroup S is Artinian if and only if the cone of S has the divisor theory.

l. Introduction. Let L be an 1-semigroup (not necessarily commutative), and let  $\sum$  be any multiplicatively closed subset of L such that for each element  $a \in L$  there is an element  $x \in \sum$  with  $x \le a$ . Let  $\triangle$  be a commutative 1-semigroup with unity quantity  $\xi$  such that (1)  $\xi$  is the greatest element of  $\triangle$ , (2)  $\triangle$  contains primes and (3) each element of  $\triangle$  is uniquely decomposed into primes apart from its commutativity.

An 1-semigroup epimorphism  $f: a \mapsto f(a)$  from L to  $\triangle$  is called a right divisor theory of L if it satisfies the following conditions:

- (1°) If for x,  $y \in \Sigma$ , f(x) is divisible by f(y) in  $\triangle$ , then x is divisible by y on the right-hand side in L, i.e. if there is an element  $\emptyset \in \triangle$  such that  $f(x) = \emptyset f(y)$ , then there is an element c  $\in$  L such that x = cy.
- (2°)  $\sum(\alpha) = \sum(\beta)$  implies  $\alpha = \beta$ , where  $\sum(\alpha)$  is the set of the elements of  $x \in \sum_{i}$  such that f(x) is divisible by  $\alpha \in \sum_{i}$ .

A left divisor theory is defined analogousely.

A main purpose of this note is to prove the following THEOREM. Let S be a conditionally complete lattice-ordered semigroup (abbr. cl-semigroup) with unity quantity e. Assume that the cone  $C = \{a \in S; a \le e\}$  satisfies the ascending chain condition in the sense of quasi-equality (cf. DEFINITION 3 ) and has a join-

generator system  $\sum$  such that (a)  $\sum$  is closed under multiplication (b) every element of  $\sum$  is invertible in S and (c) every element set S is written as  $s = ax^{-1} = y^{-1}b$  where  $a,b \in C$  and  $x, y \in \sum$ . Then the following conditions are equivalent:

- $(1_r)$  C has a right divisor theory.
- $(l_1)$  C has a left divisor theory.
- (2) C is archimedian.
- (3) S is Artinian.

Let G be the group generated by  $\sum$  in S. Then S is a quotient semigroup of C by  $G \wedge C$  in the sense of [2], where  $\wedge$  will denote the intersection. The cone C of S is said to be archimedian, if whenever  $z^n x \leqslant e$  for  $n=1,2,\ldots(x\epsilon\sum,z\in G)$  imply  $z\leqslant e$ . Since  $z^n x\leqslant e \iff z^n\leqslant x \iff xz^n\leqslant e$ , there needs no distinction of "right" and "left" for archimedesness. An Artinian 1-semigroup is considered in the next section.

2. Artinian 1-semigroups. Let S be a cl- semigroup whose cone C has a join-generator system  $\sum$  with the conditions (a), (b) and (c) in the theorem mentioned above.

LEMMA 1. The group G generated by  $\sum$  in S is a join-generator system of S.

Proof. The any element  $a \in S$  there is an element  $x \in \Sigma$  such that  $ax \in C$ . That  $ax = \sup N$  for a subset N of  $\Sigma$ . Hence we have  $a = (\sup N)x^{-1} = \sup (Nx^{-1})$  where  $Nx^{-1} = \{ux^{-1}; u \in N\}$ . This means that G is a join-generator system of S.

LEMMA 2. For any two elements a and b of S,  $X(a,b) = \{u \in G; ub \le a\}$  is non-void. The set  $F(a,b) = \{s \in S; sb \le a\}$  has an upper bound, and sup  $F(a,b) = \sup X(a,b)$ .

Proof. Take an element  $x \in G$  such that  $x \le a$ , and take  $y \in \Sigma$  such that  $yb \le e$ . Then putting u = xy we have  $ub \le a$ . It is easy to see that  $av^{-1}$  is an upper bound of F(a,b) for any  $v \in G$  with  $v \le b$ . Let  $s = cx^{-1}$  be any element of F(a,b) where  $c \in C$ ,  $x \in \Sigma$ ; and put  $J = \{z \in \Sigma : z \le c\}$ . Then since  $zx^{-1}b \le cx^{-1}b = sb \le a$  and  $zx^{-1}b = sb \le a$ 

 $\in$  G, we have  $s = cx^{-1} = (\sup J)x^{-1} = \sup(Jx^{-1}) \le \sup X(a,b)$ . Hence  $\sup F(a,b) \le \sup X(a,b)$ . The converse inequality is evident.

DEFINITION 1.  $a/b = \sup F(a,b)$  is called a right residual of a by b.

LEMMA 3. If  $a \in S$  and  $u \in G$ , then  $a/u = au^{-1}$ . In particular  $e/u = u^{-1}$ .

Proof. There is a subset A of G such that  $a/u = \sup A$ . Then for any  $z \in A$  we have  $zu \leq a$ ,  $z \leq au^{-1}$ ,  $a/u \leq au^{-1}$ . The converse inequality is evident.

The residual has thr following properties:

- (1) a/(bc) = (a/c)/b.
- (2)  $(\inf A)/b = \inf \{a/b; a \in A\}$ , if either inf A or the right-hand side exists.
- (3)  $a/(\sup B) = \inf \{a/b; b \in B\}$ , if either sup B or the right-hand side exists.

It is clear that  $U(a) = \{ u \in G; a \le u \}$  is non-void for any  $a \in S$ .

DEFINITION 2.  $a^* = \inf U(a)$  is called a closure of a. a is said to be closed if  $a^* = a$ .

The following properties are immediate:

- (4)  $a \leq a^*$ .
- (5)  $a \le b$  implies  $a^* \le b^*$ .

LEMMA 4. If a is closed, then a/b is closed for any b  $\in$  S.

Proof. Let b = sup B for a subset B of G. Then since a = inf U(a) we have  $a/b = \inf U(a)/\sup B = \inf \{ u/v; u \in U(a), v \in B \} = \inf \{ uv^{-1} \} \geqslant \inf U(a/b) \geqslant a/b \text{ (by (2),(3) and LEMMA 3).}$  Hence we obtain  $a/b = \inf U(a/b)$  as desired.

We have the following properties:

- (6)  $a^* = e/(e/a)$ .
- (7) e/a = e/a\*.
- (8)  $a^{**} = a^*$ .
- (9)  $a*b* \leq (a*b*)* = (ab)*.$
- (10) (sup A)\* = sup(A\*)\*, if either sup A or sup A\* exists, where A\* =  $\{a^*; a \in A\}$ . In particular  $(a \cup b)^* = (a^* \cup b^*)^*$ .

(11) (inf A\*)\* = inf A\*, if inf A\* exists. In particular  $(a* \cap b*)* = a* \cap b*$ .

We define an operation " $_{\circ}$ " by  $a^{*} \circ b^{*} = (ab)^{*}$ .

Proof. Ad (6): For any  $u \in U(a)$  we have  $e/a \geqslant e/u = u^{-1}$ ,  $e/(e/a) \leqslant e/u^{-1} = u$ . Hence  $e/(e/a) \leqslant \inf U(a) = a^*$ . Conversely since  $a = \sup A$  for a suitable subset A of G, we have  $x^{-1} = e/x \geqslant e/a$  for any  $x \in A$ . Hence  $x = e/x^{-1} = e/(e/x) \leqslant e/(e/a)$  and hence  $a = \sup A \leqslant e/(e/a)$ . Thus we obtain  $a^* \leqslant e/(e/a)$  by LEMMA 4 and (5). Ad (7): By (6) we have  $e/a^* = e/(e/(e/a)) = (e/a)^* \geqslant e/a$ . The converse inequality is evident. (8) is immediate by (6) and (7). Ad (9): Since  $e/(ab)^* = e/(ab) = (e/b)/a = (e/b^*)/a = e/(ab^*)$ , we have  $(ab)^* = (ab)^* = e/(e/(ab)^*) = e/(e/(ab^*)) = (ab^*)^*$ . Now we can define left residuals and argue symmetrically as above. If  $u \in G$  then  $ua \leqslant e \iff a \leqslant u^{-1} \iff au \leqslant e$ . Hence we have  $e/a = a \leqslant e$ , the left residual of e by e/a. This yield e/a (ab) e/a, and the identity of (9) holds. (10), (11) and (12) are checked easily.

DEFINITION 3. Two elements a, b  $\in$  S are said to be quasi-equal, if  $a^* = b^*$ . In symbol:  $a \sim b$ .

- (13)  $a \sim b$  implies e/a = e/b, and conversely.
- (14)  $a^* \sim a$ .
- (15)  $a^* \sim c$  implies  $a^* \geqslant c$ .

The above three are immediate. Put  $S^* = \{s^*; s \in S\}$ , and define  $a^* \lor b^* = (a^* \cup b^*)^* = (a \cup b)^*$ ,  $a^* \land b^* = (a^* \cap b^*)^* = a^* \land b^*$  and  $a^* \land b^* = (a \cap b)^*$ . Then by using (8)  $\sim$  (12) we can show that (S\*,°,  $\lor$ ,  $\land$ ) is cl-semigroup, and similarly for (S\*,°,  $\lor$ ,  $\land$ ).

DEFINITION 4. If the semlgroup  $(S^*, o)$  is a group, S is called an Artinian 1-semigroup [3].

We can show that if S is Artinian,  $(S^*, \circ, \vee, \wedge)$  is an cl-group. Hence  $(S^*, \circ)$  is a commutative group, and  $(S^*, \vee, \wedge)$  is a distributive lattice. In this case e is maximally integral (cf. p, 12 in [1]). For it can be shown that C is archimedian if and only if the above

two meet operations coinside (cf. pp 13-14 in [1]).

3. Proof of THEOREM.  $(1_r) \Longrightarrow (2)$ ; Let  $(C, \triangle, f)$  be a given divisor theory of the cone C of S, and let H be the restricted direct product of infinite cyclic groups, each of which is generated by a prime divisor in  $\triangle$ . Then it can be show that  $f: C \Longrightarrow \triangle$  extends to a map  $f: S \Longrightarrow H$  by  $f: cz^{-1} \longmapsto f(c)f(z)^{-1}$  where  $cz^{-1} \in S$ ,  $c \in C$ ,  $z \in \Sigma$ .  $f(cz^{-1})$  does not depend on the choice of the fractional representations.

Suppose that  $xu^n \leq e$ ,  $x \in \Sigma$ ,  $u \in G$  for  $n=1,2,\ldots$ , and let  $f(x) = \mathcal{T}_1^{\lambda_1} \ldots \mathcal{T}_{\gamma}^{\lambda_{\gamma_{+1}}} \ldots \mathcal{T}_{\gamma_{+1}}^{\lambda_{m}} \ldots \mathcal{T}_{\gamma}^{\lambda_{m}} (\lambda_i > 0)$ ,  $f(u) = \mathcal{T}_1^{\lambda_1} \ldots \mathcal{T}_{\gamma}^{\lambda_{\gamma_{+1}}} \ldots \mathcal{T}_{\gamma_{+1}}^{\lambda_{\gamma_{+1}}} \ldots \mathcal{T}_{\gamma}^{\lambda_{m}} (\lambda_i > 0)$ ,  $f(u) = \mathcal{T}_1^{\lambda_1} \ldots \mathcal{T}_{\gamma}^{\lambda_{\gamma_{+1}}} \ldots \mathcal{T}_{\gamma_{+1}}^{\lambda_{\gamma_{+1}}} \ldots \mathcal{T}_{\gamma}^{\lambda_{\gamma_{+1}}} (\mu_i > 0 \text{ or } < 0)$  be the prime factorizations in H, where  $\mathcal{T}_1, \ldots, \mathcal{T}_{\gamma}$  are the common prime divisors. The since  $f(xc^n) \in \Delta$  we have  $\lambda_i + n\mu_i \geqslant 0$  ( $i = 1, \ldots, r$ ) and  $n\mu_j \geqslant 0$  ( $j = r+1, \ldots, t$ ) for all positive integers n. This implies  $\mu_i > 0$  for  $i = 1, \ldots, r, \ldots, t$ . Hence we have  $f(u) \leqslant f(e)$ ,  $f(u) \in \Delta$ . Since u is written as  $u = yz^{-1}$  for some  $y, z \in \Sigma$ , we have y = uz, f(y) = f(u)f(z). By using the condition (1°) we can choose an element  $c \in C$  such that y = cz. Thus we obtain  $u = c \leqslant e$  as desired.

- $(2)\Longrightarrow(3)$ : Let a be an arbitrary element of S\*, and let b = az  $\in$  C, z  $\in$   $\Sigma$ . Then since e/b  $\geqslant$  e, we have b\* = e/(e/b)  $\leqslant$  e/e = e Hence we obtain aoz = b\*  $\in$  C\* =  $\{c^*; c \in C\}$  = S\*  $\land$  C. Thus in order to prove that (S\*, o) is a group, it is sufficient to show that every element of C\* is invertible with respect to the operation "o". Let a  $\in$  C\*, and let u  $\in$  G be an element such that a(e/a)  $\leqslant$  u. Then u<sup>-1</sup>a(e/a)  $\leqslant$  e, u<sup>-1</sup>a  $\leqslant$  e/(e/a) = a\* = a. Hence we have a  $\leqslant$  ua, a  $\leqslant$  u<sup>n</sup>a for n = 1,2,.... If we take an element x  $\in$   $\Sigma$  such that x  $\leqslant$  a, then x  $\leqslant$  u<sup>n</sup>a. Hence u<sup>-n</sup>x  $\leqslant$  a  $\leqslant$  e for n = 1,2,.... This implies u<sup>-1</sup>  $\leqslant$  e, e  $\leqslant$  u. Thus we get e  $\leqslant$  inf U(a(e/a)) = (a(e/a))\*  $\leqslant$  e\* =e. We obtain therefore ao(e/a) = e.
- $(3) \Rightarrow (1_r)$ : Suppose that S is Artinian. Then  $(S^*, \circ, \bigvee, \bigwedge)$  is cl-group and so  $(S^*, \circ, \bigvee, \bigwedge)$  is commutative 1- group. For an element  $p^*$  of  $S^*$ ,  $p^*$  is irreducible if and only if  $p^*$  is prime. Since C

satisfies the ascending chain condition in the sense of quasi-equality, each element of C\* is uniquely decomposed into primes apart from its commutativity. Now we show that  $(C,C^*,*)$  is a divisor theory of C. Suppose that  $x^* = a^* \circ y^*$  for  $x,y \in \Sigma$  and  $a^* \in C^*$ . Then since  $x^* = x$ ,  $y^* = y$  we have  $x = a^* \circ y$ ,  $xy^{-1} = x \circ y^{-1} = a^*$ ,  $x = a^* y$ . This shows that the condition (1°) holds for C. Let  $\Sigma$  (a\*) be the set of the elements  $x \in \Sigma$  which are divisible by  $a^*$ , i.e.,  $x \le a^*$ . If  $\Sigma$  (a\*) =  $\Sigma$  (b\*) we obtain  $a^* = \sup \Sigma (a^*) = \sup \Sigma (b^*) = b^*$ . That is, the condition (2°) holds for C.

Similarly we can show the implications:  $(1_1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1_1)$ .

4. Uniqueness for divisor theory. Let  $(L, \triangle, f)$  be a (right) divisor theory of L. An element  $\alpha$  is called a principal divisor, if there is an element  $x \in \Sigma$  such that  $\alpha = f(x)$ . It is easily shown that  $\sum_{i=1}^{n} (\alpha_i)^{n}$  is not vacuous for each divisor  $\alpha$ .

UNIQUENESS THEOREM. For any two right divisor theories (L, $\triangle$ ,f) and (L, $\Gamma$ ,g) of L there exists an isomorphism  $\mathcal G$  from  $\triangle$  to  $\Gamma$ , under which the principal divisors in  $\triangle$  and in  $\Gamma$  correspond.

Proof. We shall show first that for each prime  $\pi \in \Delta$  there is a prime  $\beta \in \Gamma$  such that  $\Sigma(\beta) \subseteq \Sigma(\pi)$ . For, if not, there is a prime  $\pi \in \Delta$  for which there is no prime  $\beta \in \Gamma$  with  $\Sigma(\beta) \subseteq \Sigma(\pi)$ . Take an element  $x \in \Sigma(\pi)$ , and let  $g(x) = \beta_1^{k_1} \dots \beta_n^{k_n}$  be the prime factorization of g(x) in  $\Gamma$ . Then since each  $\Sigma(\beta_i)$  is not contained in  $\Sigma(\pi)$ , we can choose  $x_i$  which is contained in  $\Sigma(\beta_i)$  and not contained in  $\Sigma(\pi)$ . Hence there are  $\gamma_i \in \Gamma$  such that  $g(x_i) = \beta_i \gamma_i$  for  $i = 1, \dots, n$ . Then we have  $g(x_1^{k_1} \dots x_n^{k_n}) = g(x) \gamma$ , where  $\gamma = \gamma_i^{k_1} \dots \gamma_n^{k_n}$ . Hence by  $\gamma_i^{k_1} \dots \gamma_n^{k_n}$  is divisible by  $\gamma_i^{k_1} \dots \gamma_n^{k_n}$  contains some  $\gamma_i^{k_1} \dots \gamma_n^{k_n}$  is divisible by  $\gamma_i^{k_1} \dots \gamma_n^{k_n}$  there is a prime  $\gamma_i^{k_1} \dots \gamma_n^{k_n} \dots \gamma_n^{k_n} \dots \gamma_n^{k_n} \dots \gamma_n^{k_n} \dots \gamma_n^{k_n}$ 

Next we show that  $\pi = \pi'$ . Since  $\triangle$  is a semigroup with the

unique factorization theorem, we have  $\pi\pi' \dagger \pi'$ . By using (2°) we can see that  $\sum(\pi\pi')$  is strictly contained in  $\sum(\pi')$  and hence in  $\sum(\pi)$ . Then we can take an element  $y \in \sum$  such that f(y) is divisible by  $\pi'$  and not divisible by  $\pi\pi'$ . If  $\pi \dagger \pi'$ , f(y) is divisible by  $\pi\pi'$ , since f(y) is divisible by  $\pi$ . This is imposible. We have therefore  $\pi = \pi'$ ,  $\sum(\pi) = \sum(\beta)$ . By using (2°) we can see easily that for each prime  $\pi \in \triangle$ , the prime  $\beta \in \Gamma$  with  $\sum(\beta) = \sum(\pi)$  is uniquely determined. Hence we can define the map  $\beta : \pi \mapsto \beta = \beta(\pi)$ . It is evident that  $\beta$  extends uniquely to an isomorphism from  $\Delta$  to  $\Gamma$ .

In order to prove the last part of the theorem we suppose that f(x) is exactly divisible by  $\mathcal{T}^k$ . Since  $\Sigma(\pi^2)$  is, by  $(2^\circ)$ , strictly contained in  $\Sigma(\pi)$ , we can choose an element  $x_0$  such that  $f(x_0) = \pi\alpha$  and  $\alpha$  is not divisible by  $\pi$ . Hence again by  $(2^\circ)$  we can take an element  $\alpha$  which is contained in  $\alpha$  ( $\alpha$ ) and not in  $\alpha$  ( $\alpha$ ). Then of course  $\alpha$  ( $\alpha$ ) is not divisible by  $\alpha$  ( $\alpha$ ). Since  $\alpha$  ( $\alpha$ ) for some  $\alpha$  ( $\alpha$ )  $\alpha$ )  $\alpha$  ( $\alpha$ )  $\alpha$ )  $\alpha$  ( $\alpha$ )  $\alpha$  ( $\alpha$ )  $\alpha$ )  $\alpha$  ( $\alpha$ )  $\alpha$  ( $\alpha$ )  $\alpha$ )  $\alpha$ 0 ( $\alpha$ )  $\alpha$ 0 ( $\alpha$ 0)  $\alpha$ 0)  $\alpha$ 0)  $\alpha$ 0)  $\alpha$ 0)  $\alpha$ 1 ( $\alpha$ 0)  $\alpha$ 1 ( $\alpha$ 0)  $\alpha$ 2 ( $\alpha$ 0)  $\alpha$ 3 ( $\alpha$ 0)  $\alpha$ 3 ( $\alpha$ 0)  $\alpha$ 4 ( $\alpha$ 0)  $\alpha$ 3 ( $\alpha$ 0)  $\alpha$ 4 ( $\alpha$ 0)  $\alpha$ 5 ( $\alpha$ 0)  $\alpha$ 5 ( $\alpha$ 0)  $\alpha$ 6 ( $\alpha$ 0)  $\alpha$ 0)  $\alpha$ 6 ( $\alpha$ 0)  $\alpha$ 1 ( $\alpha$ 0)  $\alpha$ 2 ( $\alpha$ 0)  $\alpha$ 3 ( $\alpha$ 0)  $\alpha$ 3 ( $\alpha$ 0)  $\alpha$ 3 ( $\alpha$ 0)  $\alpha$ 4 ( $\alpha$ 0)  $\alpha$ 3 ( $\alpha$ 0)  $\alpha$ 4 ( $\alpha$ 0)  $\alpha$ 5 ( $\alpha$ 0)  $\alpha$ 5 ( $\alpha$ 0)  $\alpha$ 5 ( $\alpha$ 0)  $\alpha$ 6 (

COROLLARY 1. Suppose that S is an Artinian 1-semigroup, and C the cone of S. Then the divisor theory  $(C,C^*,*)$  is uniquely determined apart from isomorphism.

COROLLARY 2. S and C are as same as in Corollary 1. Assume that the ascending chain condition holds for elements of C, and any prime element is maximal (in C). Then S forms a commutative 1-group.

Proof. It can be proved that quasi-equality implies equality, which is similar to the proof of Theorem 2.6 in [1].

- 1 - 1 - 1

## REFERENCES

- [1] K.Asano and K.Murata, Arithmetical ideal yheory in semigroups, Journal Institute of Polytec., Osaka City Univ. 4 (1953), 9-33.
- [2] K.Murata, On the quotient semigroup of a noncommutative semigroup, Osaka Math. J.2 (1950), 1-5.