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ARITHMETIC OF SQUARES

Saburd UCHIYAMA

Department of Mathematics, Okayama University

We shall discuss two, mutually independent problems con-
cerning some arithmetic properties of squares; the one being
posed by P. Erdos (1960) and the other by S. Hitotumatu (1976).
This article is a brief exposition of the results obtained:
detailed accounts thereof have already been, or will soon be,
published elsewhere. '

I. The Number of Squares in an Arithmetic Progression

Let a and b be arbitrary integers with a > 0 and
b > 0. For any real number x > 0 we denote by A(x;ra, b)
the number of those integers an + b (0 < n < x) which are

the square of an integer. P. Erdos has conjectured that to

every € > 0 there corresponds a number X, = xo(e) such that
(1.1) A(x; a, b) < ex for X > X e

A conjecture of W. Rudin states that there is an absolute con-

stant ¢ > 0 such that

(1.2) : A(x; a, b) <‘c/§ for x 1.

v

Recently, E. Szemerédi (1974) has given a -very short (but
" by no means elementary) proof of (1.1) by noticing that there
are no four squares that form an arithmetic progression, an
observation due to L. Euler, and by appealing to his own result
to the effect that every infinite sequehce of non-negative
integers that has positive upper density contains an arithmetic
progression of four (or more) elements.

We shall give another simple and elementary proof of (1.1).
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There is no loss in generality in assuming that a > b. Every
non-negative integer belongs to one and only one arithmetic
progression of the form an + b (n > 0), where a is fixed and

0 <b < a. Hence we have

a-1
z A(x; a, b) = [vax + a — 1] + 1 (x > 0),
b=0

where [t] denotes the greatest integer not exceeding the real

number t; this implies that
A(x; a, b) < vax +a -1+ 1 (x > 0)

for any a and b with a > b > 0, since we have always
A(x; a, b) > 0. This clearly proves (1.1).

We note that neither the sophisticated proof of Szemerédi's
nor our straightforward proof just given does not establish the

uniformity in a and b, if true, of the inequality (1.1).

It is possible to find an asymptotic evaluation for A(x; a, b)

from which follows an inequality nearly as sharp as (1.2). Now,

given a and b, we write

= = 2 = 4 —
(a, b) =4 = e“f, a-= dao and b dbo, (ao, bo) 1,

where e? 1is the largest square factor of d, so that f 1is a

squarefree integer. We have for x > 0
N(a, b) N(a, b) -
A(x; a, b) — —— (Vax + -/ -,
a e

where N(a, b) denotes the number of incongruent solutions u

(mod a) of the congruence u? = b (mod a). Since
N(a, b) = eN(aO, fbo)

and since
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_ € : .
N(a_, fb ) = ()(ao) for any fixed e > 0,
where the C)—constant may depend on €, it follows from this
that

' \
(1.3) A(x; a, b) = O(aé( = +1)) (x > 0);

2re)

this inequality is in general stronger than (1.2) for large
values of x but is weaker than (1.2) for small values of x.
Professor E. Bombieri remarks that an application of the

sieve of H. L. Montgomery yields the result

a 2
A(x; a, b) =O<(——> /}?)= O ((10g 109 3a)2v%)
¢ (a)

for x > 1, the C)—constants implied being absolute; this

result is better than (1.3) for smaller values of x.
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IO. A Five-Square Theorem
It is clear that for every even integer 2n > 0 there is

a natural number s such that 2n is representable in the

form
s s
(2.1) 2n = ) x? with the condition ) x, =0,
. i . i
i=1 . i=1
where the x, (1 < i <s) are rational integers. ' We denote

-3-
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by s(2n) for a given 2n the smallest possible value of such
s. We have evidently 2 < s(2n) < 8 for all 2n > 0.

It is proved that we have
(2.2) s(2n) < 5 for all 2n > 0

with the equality exclusively for the integers 2n of the

form
x ‘
4™ (322 + 28) (k 20, 2 >0).
The problem of determining the value of

max s (2n)
n>1

has been (orally) communicated to the writer by Professor S.
Hitotumatu of RIMS, Kyoto University, who was led to this prob-
lem in the course of his study of 'translatable complete %-th
power configuration.' Our result (2.2) gives a satisfactory
solution for the problem proposed.

We note that the result (2;2) ié'a particular case of a
general theorem due to G. Pall; however, our treatment is much
more direct and more elementéry (simpler, at least) than Pall's.

Our proof of (2.2) depends on the following

Lemma. Let m be a positive integer. The integer m
can be represented in the form

;

m= x>+ y? + z?

with some integers x, y, z, if and only if m is not of the

form
k
47 (82 + 7) (k >0, 2 > 0);

the integer m can be represented in the form



m=x%+ y? + 222
with some integers x, y, z, if and only if m is not of the

form

a® (160 + 14) (k >0, 2> 0).

The first part of the lemma is a well-known result, and

the second part is a direct consequence of the first part.

No representations of the type (2.1) are possible for odd
integers. An analogue to (2.1) for the representation of an

odd integer 2n + 1 > 0 will be
S : s
2n + 1=} x} with ) ox, =1,

where the x; are again rational integers. If we denote by
s(2n+1) for a given 2n+1 the smallest possible value of s

in the above representation, then it can be shown that we have
s(2n+1) < 4 for all 2n+1 > 0.

This result also is a special case of Pall's.
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