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Input Sets of Strongly Connected Automata
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0. Introduction

We shall deal with the input sets of sirongly connected automata
whose automorphism groups are isomorphic to a given finite group G.
As is w¢11 known, the cardinalities of stéte sets of such automata are
multiples of the order of G. Hence, we cannot find, in general, an
automaton having a small size of state set among the strongly connected
automata whose automorphism groups are isomorphic to G. However, an
automaton, whose size of input set is small and whose automorphism
group is isomorphic to G, may be found. We may not admit it as a
simple automaton from the engineering point of view. Because, the size
of its state set is not necessarily small. Nevertheless, from the
graph theoretical point of view, in which the behavior of an automaton
is described in a state transition diagram, the small size of input set

may be a standard for an automaton to be simple in its structure,

1. Introductory Concepts and Scme Results
In this section, we provide some introductory concepts about auto-

mata and their automorphism groups, and present some fundamental results
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without proof. For the proofs, see (1).

DEFINITION 1. An automaton A is a triple, A = ( 8, I, M ), where S
is a nonempty finite set of statevs, Z is a nonempty finite set of in-
puts and M is a next state function, called state transition function,
“such that M(s, xy) = M(M(s, x), y) and M(s‘, A) = s for all x,y €L¥%,
Here I* is the free semigroup generated by £, and A is its identity.

DEFINITION 2, Let A= (S, £, M ) be an automaton. A permutation
p on S is called an automorphism of the automaton A if p(M(s, x)) =
M(p(s), x) for all s€S and x=I*, Then, the set of all automorphisms
of A forms a group, denoted G(A), and we call it the automorphism group
of A. Here the product ghEG(A)F of g,h=G(A) means gh(s) = g(h(s)) for
all s€8,

DEFINITION 3. An automaton A = ( 8, I, M ) is called strongly con~
nected, if for any pair of states s,t 8 there exists an element xét*
such that M(s, x) = t.

THEOREM 1. If A= (S, I, M) is é strongly connected automaton,
then |G(A)l divides 8|, where |K| denotes the cardinality of the set K.

DEFINITION 4. Automata A = ( S, L, M J)and B= (T, , N ) are

called to be isomorphic to each other, denoted A = B, if there exist

£-> [ such that

two one-to-one and onto mappings p : S—T and g
p(M(s, 6)) = N(p(s), £(c)) for all s=S and all cE1x.
THEOREM 2, If A and B are automata such that A = B, then G(A) is

isomorphic to G(B), also denoted G(A) = G(B).

2. Group-Matrix Type Automata
In this section, we introduce the definition of group-matrix type
automata and present some results concerning these automata. For the

proofs, see (3).
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DEFINITION 5. Let G be a finite group. Then ¢° is the set ¢u{o}
in which we introduce two operations (+) and (+) as follows :

(1) Por all g,h=G, we define geh as the group operation in G.

(2) For all g=G, we define g+¢0 = Oeg = O and 00 = O,

(3) Por all g=G, we define g+0 = O+g = g and 0+0 = O,

(4) Por any g,h=G, we do not define g+h.
We shall use sometimes the notations gh and Z;lgi instead of ge¢h and
g1+g2+ coe +gs. Notice that the sum Z;lgi is defined only if at most
one of gi(ISiSs) is non-zero.

DEFINITION 6., Let G be a finite group and n be a positive integer.
We consider an nxn matrix (qu)(ls p,a<n, quEGO). If an nxn matrix
(qu) satisfies the following conditions, then (qu) is called a group-
matrix of order n on G : For each i(1<i<n), there exists a unique
number j(1<j<n) such that fij # 0.

We denote by En the set of all group-matrices of order n on G.

Then, En forms a semigroup under the following operation : (qu)(gpq)

n

= (Beey T onbicg )+

DEFINITION 7. Let G be a finite group and n be a positive integer.
We consider a vector (fp)(l.<_ p<n, prGO). A vector (fp) is called a
group~vector of order n on G, if there exists a unique number i(1<i<n)
such that fi 74 0. We denote by &n thé set of all group-vectors of order
n on G. . For all (fp)es&n and all (gpq)esﬁn, we define the following
multiplication : (fp)(gpq) = (2§=1fkgkp).

Under this operation, we get (fp)(gpq) Ean.

DEFINITION 8. Let G be a finite group and n be a positive integer,

An automaton A = ( &n, Z, MW ) is called a group-matrix type automaton

of order n on G, or simply an (n, G)-automaton, if the following condi-
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tions are satisfied : (1) &n is the set of states. (2) I is a set of
inputs. (3) M.q is a state transition functrion and it is defined by
MY(%’ o) = g¥(c)(& Ea’n’ g€L), where ¥ is a mépping of I into §n°

REMARK 1, The mapping ¥ can be extended to the mapping of I* into 611
as follows : ¥(A) = (epq)(epq = 0 if p # q, and ep = where e is the
identity of G), and ¥(xy) = ¥(x)¥(y) for all x,y €I%*,

In 'hhié case, we can see easily that M‘l’(%’ x) = g¥%(x) holds for all
x 1%, |
 THEOREM 3. Let A = ( G, I, My ) be an (n, G)-automaton. Then, G is
isomorphic to a subgroup of G(A). ’

DEFINITION 9. An (n, G)-automaton A is called regular, if A is :
strongly connected and G(A) =~ tholds.

THEOREM 4. An (n, G)-automaton 4 = ( G, I My ) is strongly con-
nected if and only if the following condition is sgtisfied ¢ For all
i,j(1<i,j<n) and all g€G, there exists some elément x in I#* such thé:b
¢y (x) = g, where we put Y(x) ((b (x.))

THEOREM 5. Let A = ( Gl’ I, My ) be a (1, G)-automaton. Then if A
is strongly connected, A» is regular, |

THEOREM 6, Let A = ( G, 29 I, My ) be a strongly connected (2, G)-—auto-—,
maton., Then, A is not regular 1f and only if there ex:.st some automor-
phism ¢ of G, some element k in G, and two subsets/\ F(r# ¢) of G such

that ¢(k) = k, ¢° (g) = kek™! for all geg, and ¥(z) = { w(o) ; oI}

=0 4@ Gy o &sh el

THEOREM T. Let A

( an, Z, My ) be a strongly connected (n, G)-auto-
maton., Furthermore, assume that there exists some number i“(1<i’<n)
which satisfies the following condition : Por all i(1<i<n, i 74 i),

‘there exist some elements X,y € I* and number q°(l1<g’<n) such that
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db. .
i q
*(x) = (4,,(x) =nd ¥(3) = (b, ()

(x) = ¢i,q(y) for all q(1<q<n) and that ¢-iq,(x) # d;iq.(y), where

Under this assumption, A is regular.

THEOREM 8. let A = ( S, I, M ) be a strongly connected automaton
such that IS| = nlG(A)l, where n is a ﬁositive integer. Furthermore,
assume that G is a finite group such that G =~ G(A). Then, there exists

a regular (n, G)-automaton isomorphic to A.

3. Input Sets of Strongly Connected Automata
In the present section, the input sets of strongly connected auto-
mata are considered.

THEOREM 9. Let A = ( S, I, M ) be a strongly comnected automaton
whose automorphism group is isomorphic to a finite group G. Then, we
have |S|1E1=>1(¢)IG|, where I(G) = min{ |H| 3§ Hc@, [H] = ¢ }([K] is
the subgroup of G generated by K).

Proof. We can assume that A is of the form A = ( G_, I, My )5 ieees
A is a regular (n, ‘G)—automaton. 'I'hen; it suffices to prove that
nlGlEl =21(c)lal.

Let ¥(o )#it be the set of all non-zero component of‘!’(o), where o €Z.
Then, obviously [¥(c )#l <n holds. By the stirong connectedness of A,
‘we obtain immediately [ \_ ¥(c Y 1= c.
Thus, we have | erz‘!(a)#l >1(G).

On the other hand, nlZfl = I\_/cez‘i'(a)#l. holds, ‘Therefore, we have
niclizl=1(C)lal. Q.E.D.

From the above theorem, we can see that there is no strongly con-
nected automaton A = ( S, I, ¥ ) such that |Z|<I(G)/n, where n =
Isl/la(a)! and G(A) = G. Thus, we may have the following question ¢

Can we construct an automaton with the smallest cardinality of input
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set among the strongly connected automata whose automorphism groups are
isomorphic to a given finite group ?

In response to this question, for any finite group G and any posi-
tive integer n, we define the number J(n, G) as follows :

J(n, G)V =min{ 1213 A= (8, £, M ) : strongly connected auto-
| maton such that G(A) = G and 1S = nlG(a)] }.

Furthermore, by (r) we denote the positive integer m such that
m—-=l<r<m. Then, we have the following result,

THEOREM 10. Let G be a finite group and n be a positive integer.
Then, we have (I(G)/n)<J(n, G)=<(1(G)/n) + p(n), where p(1l) = 0 and
p(n) = 1 for n>2. e

Proof, We can prove immediately the theorem for the case n = 1.
Therefore, we consider the case n=2,

The inequality (I(G)/n):SJ(n, G) is immediate from THEOREM 9.
Hence, we have to prove the inequality J(n, G)<<{I(G¢)/n) + p(n).
By the definition of I(G), there exists a set of generators H of G,
i.e.y [Hl= G, such that H = { h, 5 h, €6, 1<i<1(ag) }.
Now, put £ = [ {6}, where [ = { Y, 3 1<i=<{1(a)/mn) }.
Moreover, for each i(1<i <{I(G)/n) ) we can define w(xi)esén such that
all elements of Y(xi)# are gathered only into the first column of 7Q’(()’i),
T(1,) 4 20 £ 3) s B = O EOPu(y ),
Put v = (123 ... n)=8(n), vhere S(n) denotes the symmetric group on

{1,2,3, ... yn}. Furthermore, we assign ¥(8) = (e ))E(A}'n, where

pi(a
e is the identity of G. Thus, we can define an (n, G)-automaton A =

A
(6, z, M ).
Now, we prove that A is regular. Proc;f of the strong connectedness

of A ¢+ First, we prove that, for all i,j(1<i,j<n) and all heH, there
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exists an element x €I* such that the (i, j)-component of ¥(x) is equal
to h.

By the assignment of ¥([), for each h€H there exist some integer
s(1<s<n) and $+(1<t=<{1(G¢)/n)) such that the (s, 1)-component of

v(Y,) is equal to h. Now, we put x = 5“ytan'3+1

» where u= i-s(mod n)
and u>0. Here, by 8 (k>1) we denote 8 15(5° = A).

Then, if is not difficult to verify that the (i, j)—componént of ¥(x)
is equal to h,

From this fact, we can prove easily that, for all i,j(1<i,j<n)
and all gG, there exists an elsment x €I* such that the (i, j)-com-
ponent of ¥(x) is equal to g. By THEOREM 4, this indicates the strong
connectedness of A,

Proof of the regularity of A : Let ¢ be an arbitrary element in [,
g be the (1, 1)~component of ¥(¥) and k be the order of g. Then, the
(1, 1)-component of Y(Xk) is equal to e. On the other hand, the
(1, 1)—coﬁponent of Y(én) is also equal to e. By a comparison of these
two group-matrices and by THEOREM 6 and 7, the regularity of A can be
proved.,

Thus, the existence of an automaton A = ( S, £, M ) such that
G(A) = Gy 18] = nlG(A)) and 12| = {I(G)/n) + 1 could be shown. And this
completes the proof of the theorem. | ) Q.E.D.

REMARK 2, There is the case J(n, G) = (I(G)/n). For instance,
we shall consider the foilowing case.

Let G be the permutation group [{a, b, c}] on {1,2,3, ... ,9},

where a = (123), b = (456) and ¢ = (789). Then, obviously we have

a 0

b 0) and

1(G) = 3 and thus (I(G)/2) = 2, Now, put £ = {¥, 8}, ¥(¥) = (

- ().
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Then, it is easily seén that the automaton A = ( az, Z, M& ) is a regular
(2, G)-automaton. Thus, we have J(2, G) = (I(G)/2) = 2.
In the proof of the above, notice a role of the input 6, i.e.,
W% 7))
c 0
In a manner similar to the above, we have :

THEOREM il. Let n and k be positive integers which are relétively
prime, and G be a finite group such that I(G)=1(mod n). Purthermore,
assume that there exist a set of generators H of G and an element h&H
such that |H| = I(G) and o(h)=k(mod n), where o(h) means the order of h.
Then, we have J(ﬁ, ¢) = (1(G)/n).

COROLLARY. Let G be a finite group such that I(G)/G| is an odd number.
Then, we have J(2, G) = (I(G)/2).

Proof., This is the case where we put, in the above theorem, n = 2,
k=1, I(G) = 1(mod 2) and o(h)= 1(mod 2)., Here, h is an arbitrary
elément in H. . QeE.D.

THEOREM 12. Let G be a finite group., Then, there exists a strongly
connected automaton A = ( S, £, M ) such that G(A) = G and |L|<2,

Proof. It suffices to prove that min{ J(n, G) 3§ n=1}<2,

However, this is immediate from the fact that J(n, G)<(I(¢)/n) + p(n)

and min{ (I(G)/n) + p(n) 3 n=1}<2, Q.E.D.

4. Conclusion

Let G be a non-cyclic finite group. Since the automorphism group
of a one-input strongly connected automaton is always cyclic, we cannot
find a one;input strongly connected automaton whose sutomorphism group
is isomorphic to G. Consequently,'THEOREM 12 gives the best estimation

for the bound of cardinalities of input sets.,
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