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The Firing Squad Synchronization Problem for Graphs
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Abstract This paper deals with the Firing Squad Synchro~:-
nization problem for some classes of digraph structures and
graph structures. The first part of this paper gives solutions
for the classes of circuit structures, quasi-circuit strﬁétﬁreé,
and some other extended digraph structures. The second part
gives a solution for the class of connected graph sﬁrudtﬁréé;r
whose synchronization time for a graph structure with radiusr

is 3r+1 or 3r time units.

1. Introduction

The problem of synchronizing a finite (but arbitrarily -
long) one-dimensional array of finite automata, known as the
firing squad synchronization problem, was proposédvby Myhill
and Moore [8]. Consider a one-dimensional array of i1ldentical

finite automata. The state of each automaton at time ¢+1
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depends on its own state and those of its two neighbdurs at time
.. The problem consists of defining the structure of automata
80 that one end automaton of the array, called the general, can
cause all automata to enter a particular state, called the
firing state, all at onece.

It can easily be shown that the minimal time required to
synchronize an "-element array is 2n-2 time units. The first
minimal-time solution was obtained by Goto [2]. Waksman [13]
has produced a minimal-time solution with 16 states and Balzer
[1] has reduced the complexity to 8 states. The problem was
generalized in many different ways by Moore and Langdon [9],
Herman [3, 4], Rosenstiehl [11,12], Kobayashi [5, 6, 7], and
Rémani f1o].

This paper\deals with the firing squad synchronization‘
problem for d-digraph strugtures and d-graph structures.
Informally, a d-digraph structure (d-graph structure) is a net-
wark of identical finite automata in which an automaton is‘
placed at each vertex of a digraph (graph) and the automata are
connected along every arcs (edges) of the digraph (graph)

We present solutions of the problem for some subclasses of

d-digraph structures in section 3 and for the class Hd of

connected d-graph structures 1in sections & and'5.

Rosenstiehl and’Romani studied the problem of synchronizing
a network of finite automata however connected. Rosenstiehl's
solution obtains a synéhronization time of 27, where 7 is 6he

number of automata in the network, and Romanil's solution
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obtains a synchronization time shorter than or equal to:that of
Rosenstiehl's. The class of networks studied by Rosenstiehl and
"Romani is the same’cléss aé-Hdin ourvfbrmﬁlation. »bur éoluﬂiéﬁ
obtains a synchronization time of 3» or 3r+l, where r is the
longest distance between the general and any other element in.

the network.

2. Preliminaries
- In this section, we give definitions and notations used in
onis paper. S . | | B
A digraph (or directed graph) is a pair (X, U), where X”is!
a set of elements called vertices and U is a set of ordered. /
pairs of distnct verticeé called arcs.
o A graph (or undirected graph) ¢ is a pair (x, E) where X
is a set of vertices and E is a set of unordered pairs of
distinct vertices called edgés. A graph G is also regarded.asr
a .symmetric digraph G¥ that has two oppositely diré¢ted args -
corresponding to each edge of ¢G. In this paper we:addpt this
viewpoint. The order of a digraph (graph’ G, denoted'by[Gf, iéb
the number of vertices in G. | o '
The distance from a vertex z to a vertex y in G, denoted
by distG (x,4y), is the shortest iength among the péthes from
x to y. Note that generally distG.(x, y) # disté (y, z) in a '
digraph G.

A d-finite automaton m¢

is a 6-tupl§'(s, 8,5 sqé 84 gf,.k),
where (1) S is a finite set of states, (2) s, is an element not

in 5 (the external signal), (3) 89 8o and sp are'pérticularv‘

3
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distinct elements in § (the quiescent state, the general state,
and the firing state respectively), and (4) A is a transition’

function from S -x (§ L/{se})d'into S-such that A (sq, 8,5 """

>
sd) = 5, if each of &1, +-+, sy iSjeitheT sq‘or se; Informally,
Md is an automaton with d input terminal. A d-tuple (s,, *
sd) in the set (S U {se})d is called an input letter.

A d-digraph structures is a 3-tuple (@, T o d), where d is
a positive integer, G is a digraph such that dé’s d where dE is
the in-degree of ¢, and xg is a particulaf vertex of @ calléd
the general. On a d-digraph structure, a d-finite automatonde
is placed at each vertex of G. A vertex x installed with a d-
finite automaton 1s called a cell x. Cells are connected along
arcs in G. Let x be a vertex with d&'(x) into-arcs. Among d
input terminals of a cell «x, dé’(x) of them are connected with
the output terminals of the predecessor cells of x and the
remaining d - dé'(x) ( 20) input terminals are connected to the
external world.

In order to describe clearly how the input terminals of =
are connected to the predecessors of x or the external world,
each input terminal is labeled a distinct integer 7 (1 < 2 < d).
If the input terminal of =z, labeled %, is conﬁected to a pre-
decessor y of x, y is called the Z th predecessor cell of x.

‘If the igput terminal labeled 7 1s connected to the external
world, we say that the ¢ th predecessor does not exist. The % -
th component of an input letter (s,, ---, sd) of a cell x is

the state of the 7 th predecessor cell of x (if it exists) or the

external signal s, (if not).
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A d—digraph‘strupture,(G,”xg,’d) is called a .connected- d- .
digraph structure if there is at least oneupathffrom “ to y
’fbr any Verﬁex y in-@. in‘the followings, we shaii-deal Qith
connected digraph structures, so we.call them simply digraph
structures. ‘

:‘Suppose<that‘a dfdigraph structure (@G, xg, d) is given and
a d-finite automaton Mdiis4p1aced on each vertex of G. Then the
state of a cell x at time %, denoted by s (x, t, G, Z g Md),wiS‘
defined by the following rules.

At ¢ = 0, only the general cell = is in the general state
sg and all .other cells are in the guilescent state sq.*”That'is; '

,S (z, O, G,'xg, Md) is sg,ifﬂm_= xg,and is sq otherwise.. Let -

s, = 8 (xi, t, G, T Md) if the < th predecessor x of‘x;
exists
= s, ' - if it does not exist.

Then the state of x at time t + 1 is determined as
g (z, t +1, G, acg, Md)'= X (s(x, t, G, acg, Md)“,ws'l, N
sd). | ’ | e
If the state of x at time t is sps We say that « fires at
, . -° .

time t. The problem is to specify a automaton ¥ which makes

all cells in (G, xg’ d) to fire at once. A d-finite automaton

ué

i1s called a solution of the firing squad synchfonization
probiem for é éubclass Od of d-digraph structuréém(simp1y4a
solution for ed) if, for each d-digraph structures (&, xg, d) in
ed, there exists a time ¢ (@, xé, d, Md) such that all cells in
¢ fire at time t (@, xg, d, Md) and do not fire prior to time

t (G, xg, d, Md). The time ¢ (G, s d, Md) is-called the
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d

synchronization time of M~ for firing a d-digraph structures

d for

(G,fxg, d) é Od, (simply the synchronization time of M
(¢, z s d)).

Next, we define a d-graph structure(G,xg,d). Let G be a graph
with dG < d, and let ég be a particular vertex of ¢. For G, we
define the symmetric digraph ¢* that has two oppositely directed
o# = dg;.

Then a d-graph structure (G, g d) 1s defined to be the d-

arcs corresponding to each edge in ¢. Thus dG =

digraph structure (G¥, s d).

A d-graph structure (G, g d) is called a connected d-
graph structure 1f there is at least one path from x to y for
any pair of distinct vertices. The class of'éonnectea‘d—graph
structures and the corresponding d-digraph structures are

*
d and Hd

connected graph structures are called simply graph structures.

denoted as I respectively. In the followings,

A d-finite automaton‘Mdvis called a solution of the firing

squad synchronization problem for Hd if MC'Z

a#

is a' solution for

I The synchronization time £(@G, T d, Md) of Md for a d-

graph structure (&, Z o d) is defined by the synchronization
time ¢(G¥, xg’ d, Md) for the corresponding d-digraph structure
(G*,xg, d).  For a d=graph structures (G, P d), let tin (G,

z , d) be the minimum value of t(§, o d, Md) over all solutions

b

¥ for Hd. Given (G, Z g d), let L (G, g d) be

max {dist, (z,, €) + dist, (z, y)}. Kobayashi gave the follow=
H]
iy (G T, d) [5]

ing result abqut tm1

d

Theorem 2.1. For (G, g d)ell” with |G| = 1,

trin (G Zys 4) = 1.
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d

_For (@, s d) ¢ I® with || 2 2,

, ‘ tmin (a, xg’,?) Z'L(G? xg’ 4.
Especially, if there are three cells x, ', and y such that z~
and x' are adjacent, distG,(x s ;) = dist,, (xg, z'), and

dist,, (xg, x) + dist, (x, y) = dist,

{xg, x') + distG (z'y-y) =
L(c, xé, d), then

i (¢, xg,-d) > L(a, L d)v+ 1. |
Intuitively, LAG, xg, d) is the time required for x to receive
a signal from xg and leave the quiescent state, and then for y -

to recelve a signal from x for any vertices x and y in G.

3. Solutions for certain subclésses of d-digraph structures;~wﬁ
3.1 In this section, we give solutions for certain sub-

classes of d-digraph structures. A digraph c, =,(Xn, Un)viswm.

called a cireuit if ¥ = {z,, "=, = _}, U, = {ug, *"*y u__ 1},

u, = (xi-1’ xi) for each ¢ (0 < ¢ < #n), and u, = (xn-1’xd)'

A circuit structure (Cﬁ,‘x;, 1) is a l-digraph structure in -

which Cn is a circuit. Let @, be the class of circuilt structures.
A solution for Oc was given by Kobayashi. Its synchronif

zation time for (Cn’ T 1) 1s 2n-1 time units. It is easily =

1)

shown that the minimum. time required to synchronize (Cn, Ty

is 2n-1.time units. So the solution given by Kobayashi is a -
minimum time solution. The authors have obtained independently
a similar solution. Here we give our solution'Mé = (5,, s 5 8,

€ . 4q
845 Spa xc) which is called the circuit solution.
| The evolution of the solution Mc is depilcted in Fig.. 1.

The horizontal axis represents the circuit of cells in Cn and

7
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the vertical axis represenhts time. The (z, t) entry represents
the state of thez thcell at time ¢.

Let us divide cells in Cn into two equal parts. We shall
represent a bilnary number n-= g, + g 2 + *** + am2m (ai“= 0 or
1) as n = <a , +++, a,>. In dividing n cells into two equa1~
parts, each part is considered to contain <a;, *+-, a, > cells.
We divide the two halves into two patts each so that the size
of each subdivision is <a,, ---, a >- In similar fashion, the
size of the k th subdivision is <@y, ttt, ap>.

We use four signals Pyo, P11, Pag, and Pz for marking the
boundaries between subdivisions and also for generating the
following series of signals which propagate along the circuit.
Pyo and Py, are called general signals, and P,o, and P, are
called subgeneral signals.

A general signal P,, generates following series of signals:
a P-series consisting of P, and Pl‘signals which does not pro-
pagate, ’ .

BC-serles consisting of By, By, Bz, Bas Cos C15, Ca, and Cs
signals which propagate with velocities v = 1/3, 3/7, **-

(2i-1)/(2i+%—1), +++ (cells#time unit), (a BC-series which

>

propagates with v = (2i+1)/(21+1-1) is called a (Bc)i—series),

an A,-series consisting of 4,, and 4,, signals which propagates

with » = 1, and
RS-series consisting of R;, R,, Sy, S;, and S, signals which
. y )
propagate with v = 2/3, 4/7, ---, 2t st 1—l), cee (2 =1, 2,
1+1

««+), (an RS-series which propagates with v = 2t /(2 -1) is

called an (Rs)i-series).
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A generai‘sigﬁal Pll‘generates following series of signals:
a p-series,
'BC—Serieérwhich propagate with the same velocities as those of~
the above BC-series but are delayed one time unit,
an A1~series consisting of 4,, and 4;; signals which propagates
with v =_1, and RS -series.,. |
A subgeneral signal P, ("= 0 or 1) at (2,t) generates

p,, signal at (+1, t+1) and a P, -series consisting of P, signals
which does not propagate.

| A (BC)i—seri¢s §é‘thained if we delay a serieé,_which“4
propagates with v = 1/2, one unit time on every 2i-1-1 cells.
It 1s shown that a (BC)i+1-seﬁies is produced by a (BC)i—serieé:
inductively.
A (Rs)i—Séries 1s obtained if we advance a series, which
propagates with v = 1/2, one unit time on evéfy 2t cells.

It is shown that a (RS),, series is produced by a (RS);~series .

1
inductively.
We shall show how general<and subgeneral signaisrand7aréﬁu
generated on boundéries of Subdivisioh. Géﬁéfairéhd Sngeﬁeralb
signals are generated according to the following rules.
(1) When an 4 -series meets C, of a BC-series, Py, 1s
generated.
(2) When an‘Ao—series meets B, ofra BC—series,vPll‘is
generated.
(3) When an 4 -series meets C, or 06 of a BC-series, onr
1s generated.

(4) When an A,-series meets B, or B, of a BC-series, P,

a
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1s generated.

(5) When a P-series meets 5, or §, of an RS-series, P ,

1s generated.

(6) When a P-series meets R, of an’RS-serles, P 1is

generated.

(7) When a Pz—series meets 5, or §, of an RS-series, P,

1s generated.

(8) When a p,-serles meets R, of an RS-series, P, 1s

generated.

(9) When a P-serles meets 4 4 of an A -series, Pyy 1s

generated (¥ = 0 or 1).

Four cases are to be considered.

Case 1. 1let n be an integer represented by <a,, ---,“am>,
and suppose that Py is generated at (0, 0) and Paodo is
generated at (n, n). - It is shown that P 1is
generated at (n, 2n- <a,, ‘-, a,>) (i=1, 2, «-+). o

Case 2. Suppose that P,, 1s generated at (O,-O)’and
Paoao is generated at (0, 7). It is shown that
Paiai is generated at (n -~ Ay, wev, @>, 2n - <a%, ceey, am>),
and if Ay = 1, Pgai is generated at (n - <a,, +.., a > -1,
21N - <ai, Cee, am> - 1).

Case 3. Suppose that P, is generated at (o, 0), P is

Ba

genératedrat (n, n), and P is generated at (n+l, n+l). It

Ay %y
1s shown that P,, 1s generated at (n, <a;, ..., a,>) by the ¢
7 .
similar way as in case 1 and Pa a is generated at (n+l, 2n -
174
<ag, vty oa> F 1).
- Case 4. Suppose that P;, is generated at (0, 0) and

|0
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P .
% Gy

is-generated at (0, n+l). | -By-the similar .
-way as in case 2_and by considering thatvthe BC-series generated

by P,; propagate with one time unit delay, it 1s shown that
1

a.a. 5-
1 1

+1) and if a - =1, Pzai is generated at (n - @ittty

-1, 2n = Qg vev s am>)'

P is generated at (n.—,<ai, Tty oa>, 2n‘—,<ai, B

From the above consideration, we conclude that the généféié

‘or  subgeneral slgnals are generated synchronously atr . ;:;m-i

boundarles of subdivisions. Then, 1t is seen that all cells

fire at.time (2n-1) for (e , xq, 1) and thus ¥ 1s a solutlon -

~Theorem 3.1. M_ = (S , 8 , 8 58 5 8,5, A ) is-a solution-

e e e g q f e . ;

for the class 0, of cireuit structures and its synchronization

time fér (cn, xgys 1) is 2x-1 time units. The number of states.
of M, is 38. | _ | o
The evolution of the circult solution ¥, for (e, ,, ©,, 1)

"is given in Fig:s 2, where ég, sf’ and sq are denotedwby“Péo, F};

and blank respectively. | i

3.2. We consider a digraph C; = (X;, U;) which is called

a quasi-circult. A quasi-circuit ¢} = (X},01) is defined as

follows.
(1) x! = {xij 0<% <n-1, 05y hys hy = 0}
(2) U% = {(xi_1 03 xio)' 0 <72 <in=-1, T_y 0= E,_y o}
v u Qi. N
“0sism-y  O<igh, O J,
where U, 1s the set of arcs of the form (x, ; .. xij>uv

for some k.

i
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(3) There exists at least one path from z,, to;xij for all
vvertlceS«xij
From the definition, it is: shown that

(1) distyy (wyg 2,
n

i) T

‘(2) there exlists at least one circuit in G;, and

(3) all circuits of 0; pass through x.9 and their 1engthw

.are n.
A d—quasi—circuit structure is a d-digraph structure

(0%, T d) where Cé is a quasi-circuit. Let Ogi be the class

of d-quasi-circuit structures. A solution for @i% can be

obtained by slightly modifying the circuit solution u_. Let

d

M
cl

= (S 5 8 5 8 5 8.5 8,5 Ad ) be a d-finite automaton whose
e’ "e’ "g- q sf va
input letters are d-tuples. The state transition function Ail

is'defined only for such input letters that all components

other than s, are identical signals. For these defined inputs,

Mii behaves as Mc does. In more detail, let an input letter of

Mgl whose every component 1s either s € Sc or s

as sd. We define xil (s', sd)

e be expressed

= A (S', g) for all s', s € Sc

[+}

where Xc is the state tfansition function of Mc.

Theorem 3.2. Mil is a solution for Gii and its synchro-
nization time for (G%, €0 d) € @il is 2n-1 time units.

Proof. It is easily proved by the induction on t that at

any time ¢ and for each < (0 <:Z < n-1), the state of the auto-:

1
t, Cns L o0

maton at X3 is independent of J, that is, S(xij’
ul ) 1s identical for all j(0 = J = k).
Since there is at least one circuit in (C;’;xoo: d), all

cells on the circuit fire at time 2n-1. Hence all cells in

)
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(C;,vxoo, d) fire at time 2n-~1. Mi1 is called the = quasi-cir-
cuit ‘solution. | |

3.3 We consider a digraph bi = (x.,U)) which is defined
as follows. = =~ 5 7ot

(1) There is at least one circuit in C;'and all circuits
inrcglpaSS‘through a designated vertex zgq.

' (2) The maximum length of circuits in C; is n.

(3) For each vertex x, there is at least one path fromrxog
to x and the maximum 1éngth of paths, in which no vertex 1is
encountered more than oncé, is less than #.

In other words, C: is obbtained by adding arcs of the form

(x xi'.') with ¢ < ©'-1 to a quasi-circuilt C;.'

d
Let @ii be the ¢lass of d-digraph structures (C,, &
. .

c2

1g°
00 d)
be the d-finite automaton which is obtained by modify—

d

c2

and M

ing the‘quasi—circuit solution M§1 as explained below. M
’ d

c1

consists of uy and the processer for the input signal. The

processor finds which predecessor cells move to non-quiecent

state in Mi lastly. Since then, the processor regards the
1 .

signals from the predecessors other than the lastly activated
o - d »
ones as external signals. In other words, Mcz disregards input

signals received through‘arcs (xij’ xi'j') with'¢ < ©'-1 stated

for defining C; from C;. Then Theorem 3.3 is easlly proved

d

o3 is a solution for Giz and its synchroni-

Theorem 3.3 M

2 . 'y . .
zation time for (Cn, L os is 2n=1 time units.

3

n,4U;) which is defined

3.4 We consider a digraph C

2
3
n

_ (X
as follows. ‘

(1) There exists at least one circuit which pass through a

13
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designated vertex z;, .

(2) The minimum length of circuits passing through z,, is

(3) For each x, there exists at least one path from Zge tO
x and dist,? (2505 z) < 7.
n

Let eg be the class of d-digraph structures (C;, Zgos d)

and Mia be the d-finite automaton which consists of the quasi-

circuit solution Mil and the processor for the input signal.

The processor finds which predecessor cells move to non-quiecent
states first. Since then, the processor regards the signals
from the predecessors other than the first activated ones as -

external signals. Then Theorem 3.4 is easily proved.

d

a3 is a solution for @ia and its synchroni-

Theorem 3.4 M

zation time for (C;, Lo d) is 2n-1 time units.

0

4, Two preliminary solutions for d-graph structures.

d
4.,1. 1In this section, we shall consider the ciass I of

d-graph structures, and give two preliminary solutionsler and

d d

M, 4, fOr I". Let (Gr’ xg,.d) be a d-graph structure with the
radius r. Here, the radius r of a graph structure (G, xg, d) is
defined by r = max distG(xg,"x). It will be shown that the -
xeG
synchronization time of Mfr+1 for (G,, o d) is 3r+1 time units.
d ‘ .
We call M3r+1 a 3r+l solution.

Before explaining the essential idea for constructing

d e
Md L s We shall give a preliminary solution Mu whose synchroni-

3 r4

d
zation time for (G, xg, d) is 4r time units. We call ¥ a hr

r

solution. The principal idea 1s to construct the automaton

14
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which reduces a gi?enrd-graph structure to a d—guasi—circuifm
structures and then simulate the quasi-circuit solution Mii.
In (g, z s d) e Hd, if a cell x has no adjacent cell ] sﬁch
that dist, (xg,,y) ? dist, (®g, *), then = is called a termiﬁal
cell. For each cell x, there is at least one path U = [z 2,
xZ] éuch that z, = «x, z;, 1s a terminal cell, and for ali
Jg (0 <d <1y, distG (xg, xj) < distG (fg, xj+1). When wl‘iS'
the < th adjacent cell of z = Z,, the path ¥ is called the 7 th
path of x. The maximum length of the 1 th paths of x 1s denoted
Aby m(ax, i).,iNote that ifr x 1is a terminal cell, m(x,mi) is O
for all <<
A d-graph structure (Gr, s dYee ¢ is reduced to a d;

quasi-circuit structure (C;P, s d) e Oi as follows.

1
(See Fig. 3.).
First, we remove every édge e = [z, y] in G, such that

. L ] . e
dzstG (xg, x) = dtStG (xg, y) and obtain an d-graph

r r :
G;; Then we divide each cell x other than the general cell xg

and terminal cells into two subcells xl and xz called the
first subcell and the second subcell respectively and replace

each edge e = [x, y] in (¢!, for which dist,, (x_, x) < dist,,
r . Gr g : _ Gr

1 2

(xg, y), with two arcs u' = (x', »!) and u? = (y%, z?). .

(For the general cell (terminal cells), xl(ylj = 2% (y%) =z (y.)
“Finally, for each m:in ¢ and i (1 <42 <4d), if thefé exists J
such that m(z, %) < m(x, j), then we remove (x;, x) Wﬁere x; is
the second subcell of the Z th adjacent cell x of x. Theh we

obtain-a quasi-circuit C:P

. d .
The solution M, . = (S“P, Sgs Sgs S5 Sps Aur) first

|5
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simulates the above reducing process. Its state set S&P is

glven by S x 8, x+8, x 5 u {sf}. Sp is the firing state of
d

M .
w2

S1 and S2 are used to simulate the reducing process. S
and S‘+ are used to simulate Mfi on the d-quasi-circuit structure
reduced from a given d-graph structure.

We put

tn
1

1 {Go’ Gys Goy Hoy Hyy, I, J, Qoh
, = (0, 1, 2, 3)¢

65
]

S, =8, =8, - {F},

where Sc is the state set of the quasi-cireuilt solution Mii and
F is its firing state.

The general cell starts from ¢, and reaches to G, via G,
and each terminal cell sﬁarts from @, and reaches to I via Hy.
Each non-terminal cell starts from €, and reaches to J through

H, and H,.

0

Each element of S, is expressed as (m,, RN IR md)
where mie{O, 1, 2, 3}(1 < 2 <d). Let * be a cell and @ be the
i th adjacent cell of x. Let the S, component of x 1s (ml, T,
md). The value of m. has the following meaning. m, = 1 means

R , v , ‘ 1 1
that dist, (xg, x) < dist,, (xg, xi) and thus theé arcs (xi’ z)

exists in C;P.“m' = 2 means that'dist, (xg, xz) < dist(z

2 xi)

g’
1 1 2 2 X . 1 _
and thug the arcs (x°, xi) and (xi’ z°) exist in Copr My =3

means either that dist, (xg, x) = dist, (xg, xi) or x, does not
exist and thus the edge (x, xi) is removed from Gr’ or that
there exists 7 such that m(x, j) > m(x, <) and thus the arc

2 2
(xi, x ) 1s removed from G, . m, = 0 means that the connection

between * and z, 1is not yet determined.

[6



223

Inttially, the general cell is in the state (Gos (0, «+-+, 0))

and other cells are in (Q0; (0, «ovy, 0)).

d d

In simulating the behaviors of MCI, Mw makes each subcell

to receive input signals only from its predecessor subcells in

1 .

¢ ”» and ignore those from other subcells.
2

d

by

d

cl

It is shown that y can simulate the reduction from Gr to

’C:r and the solution u

1
(c2 s, x » d). Fig. 3 illustrates the solution u
r g

b
3).

on the d-quasi-circuit structure
on a (Gs,,xg,

Let dist, (¢g, z) and mzx m(x, 1) be deﬁoted by l; and Z;.
It is seen that the arcs incident into z' are established at
t = Z; and arcs incident into x? are established at ¢ =
1- + 21l + 1. Hence, the general cell can start to simulate
Mcz at ¢ = 1.

We define that each cell moves-to Sf when its two subcells
move to F. Then the synchronization time of pr for (Gr? xg, d)
is 1 + (2(2r) - 1) = Lr time wnits.

Theorem 4.1 Mfr is a solution for Hd and its synchroni-

zation time for (&, z g d) is U4» time units if lari ¥ 2 and

1 if J¢l = 1.

d - d

Next, we shall descrihe the 3» + 1 solution M3r+1, a7+

simulates the reduction from (Gr’ xg, d) to (C:r’ xg, d) as
Md does. Kobayashi pointed out the following two facts about

Kr
1 -
(¢ p? Ty d) and suggested that the synchronization time for
2
<Gr’ xg’ d) 1s improved to about 3r time units.
(1) Synchronization of (Gr’ z d) is achieved by

synchonizing the subdigraph. structure of (C;P, g d) consisting

v
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only of the first cells.

(2) A terminal cell zx, farthest from.xg devides a circuit

M
1
in (C;r, xg, d) into two halves. xy 1s called the center of
) 1
C;r’ We can find the center Of'czr at time r in the reduction
process.

Considering the two facts, we have the following modified

problem. Let (an, Ty Ty 1) be a circuilt structure in which
the center = of ¢, 1s designated. Let @y s @y oy weey Ty onn
xzn_l) be the circuit. Find a soclution of synchronizing all

cells on the semicircuilt (xo, Ly ooy xn) for the class of

1

G

2n 1).

X

0? “n?

We shall give a 1-finite automaton Mh = (Sh, s

e? Sq’ Sg,
gf, Ah),.called the semicircuit solution whose synchronization

time for (Czn’ Tys T, 1) is 3n-1 time units. M, is essentially

0
similar to”the circuit solution Mc’ and Sh includes»Sc.

The evolution of the solution M, on (C, , &,, =, 1) is

n?
depicted in Fig. 4, in which the evolution of M, on (Cn’ z,, 1)
is also shown for the reference. It is shown that the signals
generated at (z, t) in (Czn’ T s Ly 1) is idéntical to-"those at
(z, t-n) in (Cn, z 1) for 0 < 2 < n-1 and 2n + 3 < t,
Moreover, the center cell # fires at ¢ = 3n-1. Hence all
cells on the semicircuit (mo, ceus xn) of ¢,, fire at time 37-1
simultanecusly. Fig. 5 gives the semicircuit»solution for
(Cyas Ty g, 1)
Next, we consider a d-quasi-circuit structure (C;n, T og 5

X, d) in which X 1s the set {xnj}dof the center of circuits in

1 .
c n-and all xnj's are designated. A solution for synchronizing
2 :

g
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all cells in X and all cells & .'g, where 0 s ¢ < -1, 0 < J

< hi; is given by an d-finite automaton Mi which is obtained

by slightly modifying M

n
M% is defined from Mh by the same way as the quasi circiit
solution Mi is defined from the circuilt solution Mc. That is,
d

the state transition funcpion of Mh’is defined for such inputn
letters ﬁhat all components other than the external siéﬁél are
identical signals, and for these input letteré Mi behaves asmi”
'Mh does. i h

By the similar arguments used for proving Theorem 3.2, it iz
is easily shown that Mi 1s a solution for the above problem and
its synchronization time for (CZn’ AP Xn, d) is 3n-1 time units.

d

M is called the quasi-semicircuit solution.

h
Now, we shall give.a 3r+l solution Mfr+1 for the class of
d-graph structures (Gp’ xg’ d) by using the concept of Mfr and
d ‘ d , ,
My - The state set 5, pt of"Mw+1 is expressed as (S1 % Ssz 28
x S ) u {s,} where S and § " is the same set as S , of ¥ _
40 f 1 2 p . I ¥ 4
S =S is the same set as Sd of M., and s, 1s the firing state.
30 40 h h fd
Given a d-graph structure (&,, s d), M4, Starts at

t = 0 to reduce (Gr’ P d) to a d-quasi-cirsuit structure
. ,

(C?r’ xg

, d) as Mfr does and also starts at ¢ = 1 to simulate

the quasi-semicircuit solution Mi. The synchronizing time of

Md appears to be 3r time units, but it 1s not.

3r+1 .

Let z be a terminal cell fér which distG (xg, ) =r' <2/
Since x moves to (H, §% #,;*) at time r' and moves to (I, %,
%, %) at time r* + 1 fOrde z moves to (I, %, Pgo,;P;D);at R

SR ae
time r»' + 1 for Md . .Then the subcells of x move to the

3r+1°

“3
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firing state F of Mi at time 3r' < 37, while all other subcells
move to F at time 3r. Thus iﬁ failé’to synchfoniée all the
L) “ BN .

first subcells of Gr'

Since x has at least one adjacent cell e.g. ¢ th cell with

m, = 1 which does not move to F prior to time 37, (mi is the ¢

th cémponent of (ml, cee, md) e S, of x.) We define the firing
of pr+1 as follows. Let x be any cell in (G,, o, d). When

the first subcell of z is F and the first subcells of all

adjacent cells of x are also 1In F at time ¢, x moves to the
d

st 1 at time ¢ + 1. It requires one more

firing state sf of M

time unit.

Theorem 4 .2 The d-finlte automaton M§r+1 is a solution

d d

x o d) e I” 1ig

for I s g,

and its synchronization time for (G

3r+l time units.

5. A 3r solution for d-graph structures.

In this section, we give a improved solution Mfr for nd

whose synchronization time for (GP, z d) e Hi is 3r time units,

where Hi is a subclass of Hé.

We call a cell x in G, for which dist (z , ) =27, a
r g

Gp

radial cell. A cell z in G, for which there exists no cell F

such that dist, (xg, y) 2 dist (xg, x), is called a solitary - -

G
cell.

The reason why Mir requires one more time unit for the

+1
synchronization is that the first subcells of non-radial terminal
cells moVejto F e Sy before time 3r. We shall consider to over-

come this difficulty without loss of a time unit.

20



Let x bé a’terminal\celi for which dist,

, ” S
In‘Mff, the first and -second subcells of z-move respectively to.

(xg;»x) = pt,

»A and Bl € 5, atitime‘r'+1:> This is- achieved by slightly =17
modifying Mfr+1' In other words, the first subcell behaves as °

if x» 1s non-radial and the second one does as 1f x is radial.

For amh6h—radiai.terminal cell y, the first subcell of y
moveé to F at time 3r and the second~one moves to F at time 3r'.
For a radial cellyx, the first subcell of x does not move to B
prior to time 3r and the second one moves to F at time 3r.

For a non-terminal cell, the first subcell moves to F at t = 3r.

From the above consideration, if each cell x,recognizésw
prior to time 3r' (r' = distém (x?, x)) whether it 1s radial or

not then all cells can fire once at time 3r.

Usually, a terminal cell = requires r' time units (7' = distG
. - r
(xg, z)) to recognize that it is terminal and hence requires

3p' time units to recognize whether it is radial or not. But

a solitary non-radial cell x requires r'-1 time units to recog;f
nize that if is non-radial br thefe exists at least’one néﬁ—‘,‘
solilary terminal cell y such that distGr (xg,'y) =r!', If ail

radial cells are solitary, then each of them recdgnizes at time

3r-1 that it is radial and all other cells recognize prior to

time 3r-1 that all radial cells are solitary. Thus for (Gr, mg,

d) in which every radial cell is solitary, we can obtaln a

solution whose synchronization time is 37 time units.

d

Let Hi be a subclass of I% consisting of d—graph structures

in which all radial cells are solitary. We shall give a solution

21
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Mir whose synchronization time for (Gr, xg’ d) of ni»and nd -

nﬁ are respectively 3r and 3r+l time units.
The fundamental behaviors of Mir
ir+1' Mir simulates the reduction from a d-connected graph

structure to a d-quasi circuilt structure and then simulates

is identical to that of

M

the behaviors of the quasi-semicircuit solution. Beside these
behaviors, when the general cell recognizes that all radial
cells are solitary, it sends signals about thls knowledge to all
other cells.

The state set of Md is (s x § x 8§ x 8 )u {s,}. s
3r 10 2 3 L

f 10

J,,}. S, and S, are

=5 u {¢ 20 Ja .

I
1 20°

0? Il, IZ,AIZO, Jo, Jl, J

. d _ _ ‘ .
given in Mur and S3 = Su = s, are glven in Mh‘ sf 1s the firing

d

state of Msr. The states in S1° play the following roles. The

general cell moves to G2 when 1t recognizes all radial cells to
be solitary, or moveé fo G20 when it finds at least one non-
solitary’radial cell., If a terminal cell x recognizes itself to
be solitary, then é moves to I, via Io'and I,, else =z moves to
I. When x in I, recoghizes itself not to be radial or it finds

at least one non-solitary terminal cell y such that dist, (xg,

r
y) = distG (xg, z), x moves to I. When a cell in I recognizes
r

that all radial cells are solitary, it moves to I gy Jgs.d

20° 1

and J, play the same roles for non-terminal cells as I, I,, I,

and I2 do for terminal cells. When a cell in J2 recognizes that

all radial cells are solitary, it moves to J2 Thus, for any

0*
d-graph structure in Hi » the general cell, radial cells, non-

radial terminal cells, and the non-terminal cells move res-

pectively to G I I,,, and J,

20° L2 L5 one time unit before their

0

22
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firing.
Signals in S, play the same roles for M?r as 1t does for
Mff' Signals'Io, Il’ and I2 are generated at solitary cells.

Signalé Gzo’ Jzo’ and I20 are generated when all radial cells
are found to be solitary and éfe used to transmit this knowledge.
Initially, the general cell is in the state (¢ , (0, ..., 0) @,
Q) and other cells are in (QO, (O{ ceey 0), @, Q).

In simulating'thé behavidrs of the d-quasi-semicircuit
solutioh Mi’>Mfr makes each subcellito receive input signals
only from its predecéssof subcells and ignore input signals from
‘othér.subbells.’ This,can be achleved by the method similar to
" those used in Md . |
, yr . ~

If a cell.x in (Gr, o d) with disiG (xg’~x) =r' is
solitary, « moves to I0 at time‘r' and sends a Jo series:to the
genéral cell xg. Thus, if all radial cells are soii@ary, then
xg moves to Géo at tim¢ 2r ahd seﬁds J;o signals to all cells in
(Gr’ kg, d), else xg’moves to ¢, at time or+1. As a result, if
all radial cells are solitafy, they ére in I, and all other cells
are inuazd, J ‘ '

or I2; at time 3r-1. (For » = 1, radial cells
are in I s instead of Ii)‘ On the otherhand, if not all of radial

20°
cells are solitary, then solitary radial cells are in I, and all
other cells‘are in 6,, J, or I at time éf—l. (For »r = 1,
solitéry'radial cells move to I1')
| Note that if all radial cells are solitary, then they can
recognize themselves to be radial at time 3r=l. Hence we define
the firing of Mfr.as follows. ;

(1) Ifxz isinG, , 7. ,or I. at time ¢ and the first

20° 20° 20

23
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subcell of x moves to F e 5, = Sh at time * + 1, then £ moves

to Sf at time ¢ + 1.

(2) Ifx is in I, or I, all = 's withm, =1 are in J,,

12

or G,, at time t, and the second subcell of * moves to F at time

t + 1, then x moves~-to sftatitime t + 1.

(3) If =z is in G, or J and the first subcell of ¥ moves
to F at time ¢, then x moves to Sf at time £ +-1.

(4) If x is in I and the first subcells of'xi's with

m, = 1 move to F at time ¢, then x moves to 8p at time t + 1.

If all radial cells are=solitary, then all cells in (GP,
® 1) fire at time 3r according to (1) and (2), else all cells

fire at time 3r+l according to (3) and (4). (See Figs. 6 and: 7;)

Theorem 4.1 Mfr is a solution for Hd. The synchronization

d

time of Mfr is 1 time unit for (G, L d) ¢ B with 6] = 1, 3»

time units for (Gr, xg, d) e'Hi with lel = 2, and 3r+l time
units for (Gr’ s d) e md - Hi with |Gl 2 2.

Finally, we shall show that Mfr give the minimum synchroni-

zation time for some subclasses of'Hi. Let (6_, x_, d) be a

r’ Vg
member of Hiwhich has two radial cells such that dist, (€ , =,)

= 2r, We denote the set of such d-connected graph structures
by pr. Theorem 1.1 shows that

d) = 3r

(Gradxg’ g’

d) in I, .. Obviously Theorem .1 gives the

) v tmin d)y =2 L (Gr’ x

for any (Gr’ xg’ )
synchronization time of 3r time units for any (Gr’ xg, d) in Hap’
d

3p’

Let (Gr, s d) be a member of'Hd - Hi which has three

Thus, Mfr is a minimum time solution for I

radial cells T X, and z, such that %, and x, are adjacent

24
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(

each other and distG L3 Ty) = distG>(xz, r,) = 2r,
. r
We denote the set of these d-connected graph structures
d
by,H3P+1. Theorem 1.1 shows that
toin (Gr’ L d) =2 L (Gr’ T d) +1=3r +1
d .
for any (Gr, Ty d) in H§r+i' Theorem 4.1 gives the
synchronization time of 3r+l time units for any <Gr’ o d) in
Hd . Thus, Md is a minimum time solution for i .
3r+1 3r 3y +1
There results give Theorem 4.2.
d d a =
Theorem 4.2 Let I' be I, v I . v { (e, ® s d)|lel= 1}.
Mfr gives the minimum synchronization time for any (GP, xg, d)
in Hd. ‘
m
Conclusion

We have examined solutdons of the firing-squad synchronif‘
zation problem for some classes of d-graph structures and
graph structures.

In the first part, we have given solutions forrthe classes
of circuilt structures, quasi-circuit structures, and some other
digraph structures.

In the second part, we have given two solutions for the
class of connected graph structures whose synchronization time
for (Gr’ xg, d) are respectively br and 3r+l time units where
G, is a graph with the radius r.

In the final part, we have given a improved solution for -~
connected graph étructures whose synchronization time for
(Gr’ xg, d) is 3r or 3r+l time units depending upon the property

of radial cells. Moreover, we have shown that our solution give

PR
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the minimum synchronization time for a subclass of connected

graph structures.
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Fig. 1 The scheme of the solution
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time_

7 8

9

10

112

Aco

S

T

Aol

sh

T

B2

Rz

Bs

L |

R

Ci

H

Rz

Bo

_l_

1

Co

c?

T1S)

Aot

Bt

Cz

S0iS2

Aio) K

Bz

Cs

B|s:

0 [~ | | |

N

N

Bo

Ca3|S2

ARy

BaiL'

Ct

cs|B?

Rz

Bo|L?

An

K

Ce

K | Ce3)

St

2%

o

C

Ao

Co

Co

B2

Si

S

K |C2

Si

T

P2o)

Bis

= [ [ A g [t [ [

S2

Co

B2

Sk

T

P2

Poo

Be

Bis

—.N

Rz

P2

P iAo

Bs

Bs

L'[Ry

B3| Ao

B2

B2

L ]

Pai

Po|B3

B2

BER2

BolL'

Pu

B3

_...N

P2

PiniBo

~l ¥

Pu

BslL '

P22 €T

Po

Pa2

B2

P22

P o| P22|

¢k

Po

P22lB 3

FILF

F

m

ﬁu

ﬂ

FLF

F

FIF

n=l3,

mo = Poo »
Sq is denoted by the biank.

S¢=F

Fig. 2 The solution M, for quwv x

s 1)



LY

235

%
Qo . .
oxo Xa Xen=Xo
oxo vx._.xo__
, . VW-series
LI\ 200
the first subcell \N
v /// I D,
the second subcell 2] u.‘_._m )
Fig. 3 The i1llustration of the solution Fig. 4 The scheme of the solution
d
M, ., for Aawu T 3). M, for AQNSv Tos T 1).
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X3 X2 X Xo Xa Xs Xe

0 1 2 3 45 6 7 8 9 10 1
olp ) Xo is the general cell.
 [P3]A BB % dm eadiem
7 . Xe Xs Xe '
” W\_ « A A - ; Xo Xi x“ X3 X7 X8 Xs Xio
2 3 0]Go
4{P3}V3 A 161 ol I 1 [Ho Ho
5! P% <a<_ A 2|61 [Hi|Ho Hi{lo H1lHo
P 2 > 316 1|HiHi] 1o Jo|Tu Hill
mvw <o<u _umw 4|6 i[H1|To|I Ji|12 J 11
7|P2 Wi Pao| Aoo 516,130 T1]12) [T (12} [3[1
8lpPs W2V PéolLe | Ao 6[GeolT:|T21T2] [T [1] [3 (1
\ ” T A 7|620{J20l T2} I2 J20/ 1 Jzo 1
9{Pd WiV Pdo L {Aod
ofe ([l sl (71T i s e
P2 Wo|Va <m wa mw Mool x._w ,x_m x__, x”a x xm xw X x_"o xw x8
12| Poo Vis! Y Péo L3s.|T xo xi xt xs x§ x xf xb xb xE xf
13[P1 [Aod__ | V2|VI[ [Péo si|T s
14|Po[B3|Aoil V3| Va|Y'|Poo L%R2 2[P3lR y
15[Pui|Bo|L'|Pi|Vs|Y 2[Péd) L' 3[PilVI[A Vi[A [P
16|Po| P22| C¥|Po| Pz V3| PSd L? 41PZ|V3l- |A ”m Vil |R6lAco
: 5[P3V 6iAool | 1V3] IPSoIL
HEAREREEE s{palve Yl Tred12[ao] [Va[YTIE
. 7{Pu|VolY 6o (L'l [Vo[Y¥F
n=6, S =Py, S¢=F 8[Po| Pl WY LZ| [Re|WIIF
Sq is denofed by the blank . olF IF [F Vi FIFIF
d
Fig. 5 The solution M, for Fig. 6 The solution Moy for (G,, G 3)

(Cags Tos ZTygs 1). whose all radial cells are solltary.
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Xs Xz X1 Xo, Xe Xs Xe

Xois the generai cell.
X3, Xs. and Xitare
Xu  Xe Xr Xo X - rodial cells, but
X3and Xugre not
) Xu solitary.

X0 X1 Xz X3 Xa X5 Xe X7 Xs X3 X

01Go

1{G1{Ho -{Ho Ho Ho

21G1iHi{Ho 1H1 | Hof HijTo] [H1Ho

316 | HijH1[Ho HilHi} To vol 11 Hijl

41Gi HiH T Hij{Jol It Ji Iz JI1I

5|6 [Hi|J | T 1To| I Iz J |12 JiI

6[6|TITII .| T2l Ip Jil JiI

T162(T IT |1 JiJ20 12 T 11 7|1

8]G2|T (J|I J 3|12 il J |1

9|62/ jJ |1 J {31 Il JiI

10]S1[S1[S+|S S¢[Se|[S¢ St|St Se{St

The dicgrams for subcells are ?. same as
in Fig.2!

Fig. 7 The solution R&s for (G,, o

has non-solitary radilal cells.
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