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Relation between certain standard repreeentations
of g and non-unitary principal series Tepresen—
tations of G. Case of G =‘SOO(n—l,l),>g_= so(n-1,1).

Here we explain how we can establish an explicit correspondence?
between these two kinds of representations, and then can study the
structure of the latter representations (subquotient vphenomena).'3
We keep to the notations in the following papers.

[I) On infinitesimal operators of irreducible‘representations of

the Lorentz group of n-th order, Proc. Japan Acad., 38(1962),
83-87.

[II] On irreducible representations of the Lorentz group of n-th
order, ibid., 38(1962), 258-262.

ﬁII] The characters of irreducible representations of the Lorentz
group of n-th order, ibid., 41(1965), 526-531.

Errata to [II}, p.259, line 57 (from bottom), read "0 < p <"

instead of "0< p < n,"; p.260, line 31 read "where exactly (3-1)
number of ni's are zero‘in a Cj;;l) and’; p.261, line 8y read
“"where exactly j mumber of n,'s are zero in « (j;; 1) and";
p.262, line 2§ , at the end of this line, add "p £ O".

At the stage when theee papers were written, any proof could
not be found for the Gelfahd—Cejtlin formula of the infinitesimal
operators for s0(n) in [1]. Therefore we gave a proof of it at theé
same time as to solve our present question, usiné a kind of zig-zagﬁ
induction on n such as so(n)—> so(n,1)—> §9(n+l)—$'_§9(n+l,l)‘.é

To clanfy what afe knoWn and what must be proved, we summalize
the known facts and pose some questions. For simplicity, we rest-
rict ourselves to the case of one-valued representations of SO(n)

and SOo(n~1,4L (The spin case can be treated likewise.)
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fA) Finite-dimensional representations of SO(n) (or those of

Soo(n_l,l) are parametrized by highest weights.
(A1) The Weyl's character formula is given by means of the high-

est weights.

(Aé) Hence we know their infinitesimal characters in the sense
in [III, ?4]

(AB)) We know how an irreducible representation of SQ(n) splits
when it is restricted to (So(n‘l)l). This splitting diagram
determines uniquely the original representation of S0(n).
 Question (QAn). Prove the Gelfand-Cejtlin formula for SO(n), that
is, prove that the infinitesimal operators A, ,i—l's given by the

i
formulas in ]_.I:] satisfy the commutation relations in [I,(S)].»

Question (QAIn). Determine the highest weight of the representation:
given by the operators of Gelfand-Cejtlin. Then determine its in-
finitesimal character.

Lemma 1. (QAI(n-1)) + (QAn) => (QAIn).

Proof. This follows from (A2) and (A3).

fBJ Non-unitary principal series. Putb

% - (So(n—l)l), M- (so(n-z)lgj,’ A — {a(t‘) =g, (V) tE R},

ifh-z a ‘ ’ %4 _ :
=y 1—2% l;a% P %c(?f \éﬂi’"f ERAE
H ~BlYe 11 %
For g = na(t)u (n€W, a(t)E A, uE K), we put a_(g) =
exp(c+(n~1)/2)t for c€ €. For u€K, g€ G, define ug €K as

%z

ug = n'atug with n'€ N, a'€ A. On LQ(K), we define a unitary
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répresentation of SOO(n—l,l): g —> To(g)‘ by
(7 (£)8) (w) = a_(ug) T(ug) (£ € L%(K)).

Let o be the parameter in [I, If] of an irreducible representa-
tion Ty of M. By the projection Pa corresponding to Ty 9

we get a canonical realization Ta . ©On a space Ha of the in-
y ’

duced representation of (a, c).

(B1) We have the character formula for T, o
b

(B2) Hence we know the infinitesimal character of T, o
?

(B3) We know for which values of ¢, Ta,c containsa non-
trivial finite-dimensional invariant subspace.

(B4) Iet 8w be an irreducible representation of K with
‘highest weight M. Then &u is contained in Ta’C)K (with
mmltiplicity‘l) if and only if 6F’M :)na. (This relation is deno{
ted by B a.) Independently of ¢, we fix a canonical ortﬁonoré?
mal‘basis in the subspace " Ha(éﬁ) of H, corfesponding to éV |
in such a Wéyvthat the infinitesimal operatdrs for K are given 1
by the Gelfand-Cejtlin formula with respect to this basis. Then
the infinitésimél»operator A corresponding to\<{a(t); tE€ RY
is expfeséed with respect to this basis of Ha &in such 2 way that

every entry is linear in c. ( A :-%%Td;c(a(t))‘tzo .)

- fc] A standard representation S of g. Fix ceg €. We

a,C

consider a vector é‘(A) corresponding to every é(%) in [i].’

's are given by the same formulas in [I]

¥
The operators Ai,i—14

as for A 's respectively. The new operator Bﬂ—l corres—

i,i-1 |
ponding to gn_l(t) = a(t) is given by a slite modification of

B in (I] as follows. Consider the case n = 2k+l. (The case

n-1
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n = 2k+2 can be treated analogously.)
S 00 3 0% 2> A N
BL YOV = S7 NN L (RNoga) <,L: AN Z (NG
I

where ALJ()) are obtained from AJ(A) in [i,(lBX] by replacing
(02~(£2k_1+1/2)2)1/2 in the numerator by (£2k_1+1/2)i§ respec—

tively and multiplying them by 1 = J—l.

Question (QCn). For an a, let A run overall poséible tables
e e Y
corresponding to all M D a. Then, prove that the above operators

and Bﬂ—l give a representation of g (i.e., prove the

m—

1
i,i-1
commutation relations holds). (We denote this representation by Sa,c»)

(C1) In the formulas (13)-(15) iIl[]j, we make a certain base-
change such that '
(%) i'(A) = (a rational function in c) X ;(X),

N \

then we get the above new operators Ai,i—l and Bﬁ—l' Let Za
be the set of half-integers different from ill, 112, ceey iik_l;
Then outside of Za the rational functions in c appearing in
(*) have no poles and no zeros, and therefore the representation
of g given by Ai,i—l? Bﬂ—l is equivalent to that given by
A

B (For anlexceptional value of ¢, the former is

n-1°

usually not completely reducible, contrary to the latter.)

i,i-17

(C2) Since the representation Sa,c is aigebraioally irredu-
cible for <:qéZa, and it is k-finite (.E.: the Lie algebra of
K), We-see thatAfor any element Z 4n the center Z of the enve-
lopping algebra U(gc)' acts as a scalar multiplication. For any'A
Z&€ Z, all the entries in Sa,c(z) are polynomials in c. There-

fore it is  a scalar operator for any c & €.
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Question (QCIn). Determine the infinitesimal character 2 —>¢€

of Sa,c'

(¢3) From the explicit form of Bﬂ~l’ we see that for ¢ E}Za,‘
c )*lk_l ’ Sa o has a finite-dimensional invariant subspace. The

b §
representation of g on this invariant subspace corresponds to the

representation of so(n) given by Gelfand—Cejtlin with the para-

meter (a, c-(k=1/2)).

(C4) TFor c < O, there exists no finite-dimensional invariant

subspace for Sa,c'

Problem (Q). Establish an explicit correspondence between Ta C's~
Baameesss . ‘ 9’

d S 's.
ang a,c S

Lemma 2. (QCn) => (QAn).

~Proof. This follows from (C3).

Lemma 3. (QCn) + (QA(n-1)) = (QCIn).

Proof. Note that the scalar . Sa C(Z) for Z& 7Z is a polyno-
. 9 . —
mial in ¢, and therefore it is uniquely determined by the values -
for c& Za,.c/:> Lk—l‘ Then the assertion follows from Lemmas

1, 2 and (C3). Q.E.D.

Lemma 4. (QA(n-1)) => (QCn).

We give an outline of a proof. As is shown in EI], it is
sufficient to prove the commutation relations for Bﬂ—l corres—
ponding to (6) in [I]. This is essentially reduced to prove some

identities of polynomials such as Py, =0 (0 & VY £n-1), P, 5 =1

-
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in [2, 2-145, (5)] (ef. [3D).

Thus using Lemmas 1-4, we can solve (QAn), (QAIn), (QCn) and

@cIn) by induction on mn.

To solve‘(Q), we proceed as follows. We now look at the imagi-

nary axis of €, that is, we compair S . with T! = the

Qy1p0 a,ip

‘representation of g corresponding to T (pE R, p £ 0).

a,ip

Note that S ip(X) is skew-hermitian for X& g, and that so is
| ? —
T ip(X) because T is unitary. They are both algebraically
0 »

irreducible. We see from the subquotient theorem of Harish-Chandra

a,ip

that S is isomorphic to a subquotient representation of some

a,ip
Compairing the infinitesimal characters of them (by (QCIm)

T ve
a',c

and (B2)), we see that S mist be algebraically equivalent %o

a,ip
\J y —_ i
&,ip (and to Ta, _ipgwhen n = 2k+l for exemple). Let R(ip)
be an intertwining operator between them:
(%) Sy ;o(X) R(ip) = R(ip) Ty . (X)  (X€ g).

Then by the normalization of a basis in every Ha(éﬁ)’ there exist
constants dr(ip) adjusting the bases in Ha(éﬁ)'s, such that
R(ip) = o dv(ip) ot
‘ po<L
where PY denotes the projection onto Ha(éﬁ)'

By the explicit form of Bﬂ—l for S , and by (B4), we see

a,ip
that dp(ip)‘ must be a rational function in dip essentially.
Therefore R(c) can be defined and the inﬁertwinig relation (%)
" holds also for almost all c &€ C: S, C(X) R(c) = R(c) T C(X).

s 9

Compairing the places of ¢ where finite demensional represen-

.taﬁionssplit‘out, we see that R(c) must be a multiple of an
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operator independent of c. This proves that Sy.o and T!
b ?

are equivalent to each other and we can take the adjusting const-
ants dp(c) independent of ¢,

Thus the  problem (Q) is now completely solved.

Once this correspondence has been established, we can study

the subquotient structure of the representations Ta o from
?

the infinitesimal standpoint, that is, using only the standard

representation © of g.
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Remark added. The representations Ta' O;juwith the same infi-
y

nitesimal character as for 8 are ’ T and T
: O,C oyC a,—C

when n = 2k+1, and are Ta o and TdV when n = 2k+2, where
9

?
av = (—nl, Doy N3y weey nk) for a = (nl, Noy eoes nk).
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‘ June, 1977
Appendix. Diagram of symmetries in the space of elementary

representations of Lorentz groups

Let G = S0_(n-1, 1) (n}7 3), and T its two-fold covering
group. _Then the quasi-simple irreducible representations of Ef
are classified in [iI]. Let ﬁ’ be the subgroup  of 8’ correspon-—
ding to M C G, and ﬁ?\ the set of equivalent classes of irreduci-
ple representations of /I\E Por a g MA and cé& €, we also define
a representation Ta o of E/ canonically as in [B] above. These

9
representations are called elementary representations of G. When

T is irreducible, it is denoted by é§ . in [II], and the
a,c (ajec)
. + i : S
D . .
notations DTy ..y D%a;p)» and (g}L in [II] are also employed here
The intertwining relations (or symmetries)between T, .'s are
’

devided into two types: those corresponding to the elements of the
restricted Weyl group (type I), and others called discrete symmet-
.~ ries (type II). (Note that in‘this case the resricted Weyl group is
of order 2.) | ' '

When Ta o is reducible, we employ the following notation.

?

on an invariant subspace H'

Tet U Dbe the restriction of Ta o

of H, , and V the representation on HQ/H' induced from Ty o
’

then we denote this fact by T = V~—> U. Let Ty end Ty be

a,c
the characters of U and V respectively, then
¢

(1) Ty + Wy = the character of Ta,c .

(The character of T, . 1is given by the same formula as that for
’

(a,0) in [III]‘evenWhen it is not irreducible.)
, ,

. ~
Since the result is parallel for G and G, we present it
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at the same time. Here we give (i) the structure of T, . When
b

it is reducible, and (ii) the symmetries between Ta,c's' For
convenience, we divide n into two cases: (I) n =2k + 2 (k> 1),
and (II) n = 2k + 3 (k» 0).

Notation. Every element a & 1,\\&,'\ is represgented by a dominant
integral form on a fixed Cartan subalgebra b of the Lie algebra

of M. Denote by p half the sum of all positive roots (with res-

pect to b ). Then Ta o is represented also by (a + p; c) as a
e ?

point in the space of all elementary representations. When Ta o is
, #

reducible, the point (a + p; c¢) is called singular.

Case I. n =2k +2 (k2 1).

. n
In this case, M = S0(2k), and ce n” is canonically represen-

ted as
(1-1) a = (n1 y Do gy eeey nk),

where Ny 5y Ny 9 eeey N aTrE integers or half-integers at the same

time such that
(1-2) A Cnp oy e Ky

(A number is called a half-integer if it is a half of an odd integer.)

Then

)
(1-3) p=1(0,1, 2, ..., k-1).
We put

= (nl y Ny + 1, ny + 2y vy My (k - 1)).
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(i) Structure of Ta o at singular points
?

The representation TOL c is reducible if and only if
’

(o) ¢ 1s of the same parity with Zj (i.e.y Cc = Ej is an integer),
and (B) lc| is bigger than [ll\, and different from L s 13 y
1 ,

PRCICS

k L]
Since TaV,—c with o = (—nl » Tp 5 Ty weey nk) is the

contragradient representation of Ta , 1t is sufficient for us

s C

to treat ¢ 2 0. The structure of T . 's is summalized in
: : R

rable I-1. (The number c¢» O is assumed there to satisfy (a), (B).)

(ii) Symmétries in the space of elementary representations

The representation T and its coﬁtraé&dient one T‘V
a,C A a” 4—C

are connected by the intertwining operators of type I: denoting

Tyoc by (a + p; c¢), this is illustrated as
’ ‘ .

(a¥+ p; —-c) ;:? (o +p; c)e
When the point (a0 + p; ¢) is not singular, this gives an isomor-
phism by an invertible bounded operator, and when the point is sin-
gular, this gives a homomorphism onto the non-trivial invariant
subspace.
Let (ml., My g ooy mk+1) be such that mj's are integers or

half-integers at the same time and that

" (I-5) O<1m1\<m2<...<mk+l.

A )
Then (a + p; c) = (ml, Mpy ey Myy woey My s mj) and its contra-

g?adient (a¥+ p; -c) = (—ml, Moy eeey TWyy voey My g3 —mj) are sin-
gular points for any j;2'2. (Here mj indicates that mj is

absent.) Conversely any singular point appears in this fashion.
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The above Zk-points are connected by the symmetries as is indicated -

in Table I-2,

Notation. In Tables I-2, IT-2, the arrows —> and == denote
the intertwining maps of type I and of type II respectively, which
are never ismorphism at singular points, and the arrow -:--» denotes

non-trivial homomorphism obtained by an iteration of these maps.

g@jg, The existence of intertwining operators illustrated by
the arrows in Tables I-2 and II-2 is affirmed as follows (especially
for == ). First these operators can be determined uniquely (up to
constant multiples) with respect to the basis $'(N) from the
infinitesimal stand point by using the representations Sa,c of 8
Then we see these operators,defined only for the vectors é'()\)'s,
can be extended to bounded operators on the respective Hilbert
‘spaces H,'s. (Taking into account the relation betweeh Sa,ip

and T! i in page 7, we may consider %'()\)'s are orthonormal.)
’

References. We give here some references for Appendix, not onlf
. for Case I but also for Case II. ' 5

A. M., Gavrilik, A. U. Klimyk: Analysis of the representations
of the Lorentz and Euclidean groups of n-th order, preprint, 1975,
Institute for Theoretical Physics, Kiev.

A, U. Klimyk, A. G. Gavrilik: The representations of the group%
U(n, 1) and SOO(n, 1), preprint, 1976, the same Institute. ;
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mrable I-1. Structure of T, (Case n = 2k + 2)
L ,C o

1) <L e (put p = ¢ - k, then nk\<p):

k-1
Ta,e = Dlar;pr) 7 G%

where PL

(nl y Do 5 eeey Dy p), and

a' = (nl 9 Lo 9 eeey T 7 s p+l), p' = e -

2) lk—1< c < 4 (put p=c - (k - 1){ then nk_l<p < nk):

L x-2 s k-l
Ta,c~ = Digr;pr) Diasp)
Where [04 ' = (nl 9 I12 y LRI nk_z ’ p”'l ’ Ilk) ’ p ' = nk_l .

3) lk-—2< c < L 1 (put p =c - (k - 2), then nk_\ZSpQ’n _l):

2

k-3 -
T =D(av;p') 77 Plosp)

AyC 'sp

where a' = (n1 y Ny oy ...,'nk_3 y P+, oy 4 nk‘), 'p' =y 5 .

4) In general for 2 < j< k-1, lj <ec < lj+l (put p =
c - j, then nj< p < nj+1):
.1 .

Ta,c =D%oc';p') ; p%a;p) ’

where  a' = (N 5, Ny 4 «eey hj—l , p+l, n ceey )y, D' = n

j+1L >’ -
5) lll, < < L, (put p =c -1, then o] L P< n,):
1
T B 08(&';0') 7 D(a;p)

ayC

WheI‘e q.' = (p+l, 1’12 Ty 1‘13 ] ceo ey l’lk), C' = Ill »

Note. When k = 1, the relation in 1) turns out to the following:

for |4)< ¢ (put p =c -1, then |n;} < D),

.Tﬁl,e - f@(c;nl) — CS-\(ml,p) )
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Table I-2. Symmetries (Case n = 2k + 2)

Structure Structure
Jadar tnviemt fachr VIS unt
space  adspace space Aulaapace

V—> U (a¥+ p; —-c) (o + p; c) V—>1
ﬁm) | . : ‘ " U.m,k. , Q
— D" A..EH. My, d,, my Bwi.,v Tw AEH, Moy eeey My; BW.L.V —
k-1 -2 G . —> %ﬁ -2 phk-1
D" D (-myy mpyy vy my g mgiem) (M, My, ey Wy gy W 5om) DR2_,D
J=1 -2 | (_ >\=, —> o~ . j=2 ynd-1
U ib A B”—nw Emw s 0oy Buv.n-w EWuTH_nnlSuvT AHH_.H_..w Emw -w@\gu.u v ey ”B.Hﬂv_..”_nu Buv U IIVU
pt — 0 (-my, m,, M3y eeey EW+H“..BNV>.AI|\|HV (my, my, M3y eeny Mpq; m,) a@ —> D
T X ]
. A _ o ,v, B .
n@ AHH..H—@Q.'V AHD.“_..QI.HD.N‘ E.Wu s 00y E\i—ﬁ-_lurml-g“_nv T AHH_.Hw BN‘ e 00y EWITH_IN Bulv &AHH.H;@Q.-V

The arrows &2 and = denotes the intertwinig maps
respectively, and the arrow ---» denotes non trivial

an iteration of two maps.

of type I and of type II
homomorphism obtained by
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case IT. n =2k + 3 (k 7 0).

In this case, M = S0(2k+1), and a& ,1\\/I//\ is canonically represen—

ted as
(II_]—) a = (Ill ’ 1’12 ’ e o0y Ilk)y

where 1q 5 N, 5 «.ey I are integers or half-integers at the same

time such that

‘(II—2) 0 < ny < ven Ky o
Then

(TI-3) o = (1/2, 3/2, ..., (2k-1)/2),

(1I-4) @+ p= (U dyy coey &)
= (n + 1/2, ny + 3/2y ceuy my o+ (2k-1)/2).

(i) Structure of T at singular points
’

‘The representation T,.. 1s reducible if and only if (a) c 1is
b

of the same parity with lj (i.e.y c = lj is an integer), and
(B) c is differentfrom = A3 PO
Since T is contragradient to T , 1t is sufficient to
o,—C a,c
treat ¢ 0. The structure of T  _'s 1§ summalized in Table
: ?

IT-1. (Then number ¢y O is assumed there to satisfy (a), (B).)

(ii) Symmetriesbin the space of elementary representations

The representation Ta o and its contragradient one Ta —c
? ’
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are connected by the intertwining operators of type I:

(a + p; —-c) 2::? (a + p; ¢),

The analogous facts hold also in this case as in the Case I: n =
2k + 2. (Note that the points (a + p; c¢) with ¢ = 0, that is,
(o« + p; =¢) = (a + p; ¢), are singular when lj’s are integers in
Case II.) .

Let (m:L y Mo 5 euey mk+1) be such that mj's are integers or

half-integers at the same time and that

(I1-5) O<ml< m, <... {myq -

N\ .
Then (o + p; c) = (ml, Mpy «oey Mgy coey My yqs mj) and its contra-
gradient one (a + p; -c) = (ml, Moy eeey My woey Mypyqs -mj) are

singular points for any j;> 1. Conversely any singular point
appears in this fashion except the points (a + p; ¢) with c = 0,
The above 2(k+l)-points are connected by the symmetries as is
indicated in Table II-2.

The points (a + p; c¢) with ¢ = 0 and lj integers, are all
singular, but any
such (a + p; O0) 1is not connected with another point by symmetries.
In this sense, these points may be called as "isolated" singular

points. They'correspond to (ml y Mo 5 eoey mk+l) analogous as

above such that

(II-5"7) O=m1< m2<...<'mk+l .

. . +
Note. The irreducible components lzh;l/Z) of Ta,O are the
limits of the discrete series representations similarly as for

SC%(Z,l)) in the case where nj‘s are half-integers, or equiva-

lently, lj's are integers.
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pable IT-1. Structure of T (Case n = 2k + 3)
et (X,,C _—

1) 4. e (put p = ¢ - (2k+1)/2, then nk< p):

k
Ta’c = D(av;pv) -7 @H
where H = (nl ’ 1’12 3 ey nk ’ p)’ and

a' = (nl s Ny 5 eeey Oy 7 s p+l), D' =0 .

2) h,<e< b (put p=c - (2k-1)/2, then m_y <)

k-1 S k
* Ta,e = Parsp?) D(a;p)
where al! = (nl ) Ty 5 seey Do 9 DLy n), P'=1m_q -

3) In general for 2. j< k, lj_l<~c< Ly (put p = Cc~-
(2j-1)/2, then n;_q <r< nj):

1 .

T - D%a';p') ,5 D%

0,C a;p) ?

where ,4a' = (n1,~ sevs Do p+l, Dy eees nk), p' = ny_q
4) O<c<111 (put p = ¢ - 1/2, then O<p<nl):
+ - , 1
To,c = (D(a;p') + D(a;p')) — D(a;p)

where p' =p +1 =c¢ +1/2>1.

5) ¢

0 (with ’Qj integers):

Ta,0 = DJ(ra;l/Z) + Dza;l/Z) :

Note. When k = O, /1\7[, is the center of ,C\}, and of order 2. We
express o & " as ‘o =0 or 1/2 according as it is trivial or
not. Then the relation 1) turns out to the following: let c¢ >0 be
a half-integer or an ihteger'according as a = 0 or 1/2, .and put

W=c - 1/2, then

+ - .
T,e = (Dgy1/o @ Doyyyn) — @r\-
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[ ——

H.mdu.m,HHVM.?]W%&&mmWHmW (Case n = 2k + 3)

o rmﬁﬁs&:a,m , Structure v
(& “MVRAL Y [ . -
Spate Mr&(.(kﬂ.bﬁn .W%MVMP M .”M\””MM)
V—> U (a + p; -C) (a + p; c) V—>T
S - D" N LG
@ IVU AEH_..Q gmw e e 0y BHHmI. WlTu..v T AHDH» Bmv e o0y EWw EW+“_|V G llW@
Hu !VU ABHw Smw * 009 EW|H_|u BW-—-”_:leWvT Agﬂ_uu EMn o0 0y BW'H_:w BHH-TH_..w ..B.Wv E O I||VU

s N L
Dd—» DI | (myy mpyy ooy Bu‘.m,... EW+H,|BuV = (my, my, ..M@\Bu, oy My 15 Bp._vm D™+ pJ
. e e - w - c = m . 0 cor o L RN M P _. e rrr

w \@ ﬁ
D2 1 N ) _— N 1 2
—> D ,, ABH‘ Moy ooy BW+H,|Emv < (myy Moy weey My g5 Emv D-—D
N . 10 ~ 1 .

Here 0 < BHA my, < .o ABW&. are all integers or half-integers at the same time.

Besides these singular points, there exist "isolated" singular points

(41, Loy evey A5 0), where O Ax“_.A 15 voo < 4y are integers.



