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I. Introduction. One of the fundamental techniques which ‘is

used for the study of the behavior of solutions in the vicinity of

a given solution is the method of linearization. Let us briefly

describe this technique. Assume that ' = f(x) 1s a differential

equation with rcz—coefficients on R*'. Let x = ¢(¢), - < t < o,

be a given solution of this equation. Now form a change of vari-

ables x = ¢(¢t) + y. Then y satisfies the differential equation
y' = Fot) + y) - F(e(B)) = gly, t).

If we let A(¢) denote the linear part of g, i.e., A(¢) 1is the

Jacobian matrix of f evaluated along the orbit ¢(¢), then the

equation for y can be written in the form

(L y' = A(t)y + F(y, t)

where the linear part of F wvanishes at y = 0. The method of

linearization can be described as follows:

Study the behavior of solutions of the linear equation

y' = A(t)y near y = 0, and then show (if possible) that the

solutions of the nonlinear equation (1) near y = 0 inherit

the same behavior.

If the given solution ¢(¢t) dis a fixed point
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of x' = f(x), i.e., a zero of f, then the matrix 4, as well
as the function F, are independent of ¢, and the study of the
linear equation y' = Ay 1is very simple. If it happens that the
matrix A4 has no eigenvalues with real part zero, then the linear
equation y' = Ay admits an exponential dichotomy, which in turn,
is inherited by the nonlinear equations, <f. [2, 3, 4, 5]. How-
ever, if A has some eigeﬂQalues with real part zero, then the
linear equation admits a trichotomy. That is, the y-space R"
admits a splitting into three linear subspaces, R" = S_-+30-+S+ s
each invariant under 4, where §_, So and S, are the algebraic
sums of the generalized eigenépaces of 4 that‘correspond, respec-
tively,bto the eigenvalﬁes of A with negative, zéro and positive
real parts. This splitting is then inherited by the nonlinear
equation near y =VO. S_ is replaced by the stable manifold,
S, by the unstable manifold and So by the center manifold, of.
[2, 5, 6. o

The next level of difficulty occurs when the given solutién
¢$(t) is nonconstant and periodic in ¢ with mihimal period
w > 0. In this case the matrix A(tj is periodic in t with the
same period w. Likewise the nonlinear term F(y, t) is o= |
periodic in . One way of attacking this problem is by means of
the Floquet theory, which asserts that there is a periodic change
of variables u = P(¢)y, where P(t) is nonsingular and periodic
in ¢, such that in terms of the wu-variable Eq. (1) becomes
(2) u' = Bu + G(u, t),
where B 1is constant and @& is periodic in ¢. Because of the

fact that ¢(¢) dis a nontrivial periodic solution of an autonomous
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differential equation ' = f(x), the matrix B has A = 0 as

an eigenvalue. In 6ther words, the invariant subspace §, for
the linear equation u'’ = Bu 1is nontrivial. Therefore the center
manifold for the full nonlinear equation (2) has dimension =2 1.
This is easy to see geometrically if one notes that the center
manifold for the nonlinear equation contains the trajectory

{¢(1): 0 < T < w}, which is a one-dimensional set S?.

. The problems one faces for a nonperiodic solution ¢(¢t) are
numerous. Difficulties occur even in the case where ¢(t) 1is
almost periodic in ¢t. In this lecture we shall describe a theory
of linéarization which encompasses the study of the behavior of
solutions in the vicinity of a given almost periodic motion. Our
theory is more refined then that developed in the above references.
Specifically we wish to generalize to nonautonomous nonlinear
equations the roles of the generalized eigenspaces of linear autono-
mous equation «x’ = 4x. This involves studying éarefuliy the
dynamical properties of the eigenvalues of the matrix 4. More
precisely, the real parts of the eigenvalués describe the éxpo-
nential growth rates of the solutions of y' = Ay. This feature
does generalize to nonautonomous problems. The theory we present
here is based on a spectral theory for nonautonomous linear
differential equations developed by Sacker and Sell [10].

Consider the linear differential equation y' = A(¥)y,
y € Rn, with bounded uniformly continuous coefficients. The
spectrum I(4) is defined in Section II, but in the constant
coefficient case it is the set {Re u} where u ranges over
the eigenvalues of "A. More generally the spectrum is the union

of a finite number of compact intervals Z(4) =L}§=1[ai, bi]'
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Associated with each spectral interval [ai, bi] there is a
nontrivial linear subspace Vi(A) of Rr" called the spectral
subspace, which'is characterized in terms of the solutions of

y' = A(t)y with exponential growth rates in the interval

[ai, bi]' (In the constant coefficient case, Vi(A) is the
algebraic sum of the generalized eigenspaces corresponding to
eigenvalues A with Re A = a;, = bi') We show in Theorem 1 that
the nonlinear equation

(3) , y' = Ay + Fly, t)

inherits the samé structure, provided F satisfies certain
reasonable assumptions. That is, associated with each spectral
interval there exist "branch manifolds" Vi(A’ F) such that
Vi(A’ F) is homeomorphic to Vi(A)' Moreover, Vi(A’ F) can be
characterized in terms of solutions of (3) with exponential gfowth
rates approximately in the interval [ai, bi]'

OQur Theorem 1 includes the center manifold theorem described
above and represent the appropriate generalization of this theorem
to nonautonomous systems. The existence of a nontrivial center
manifold for the nonlinear equation (3) is thus assured whenever
A = 0 1is in the spectrum x(4) of the related linear equation.
If X =0 1is not in the spectrum Z(4), then there is a splitting
of R" into stable and unstable manifolds of complimentary dimen-
sions.

Theorem 1 is general enough to apply to the study of the
behavior of solutions in the vicinity of an arbitrary bounded

solution of x' = f(ax). However because of certain technicalities,

which are described below, one must exercise care in applying this
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result. Fortunately all the technical conditions underlying
Theorem 1 are satisfied in the case where ¢(¢) is an almost peri-
5dic solution of «' = f(x), and this leads to a rather interesting
application. |

Specifically let ¢(z) be an almost periodic solution of the
autonomous equation x' = f(x), where f is a ¢%*-function on R"
Then the hull H(¢) = Cl{¢(1): T ¢ R} 1is a space with topological
dimension & and & < n. By the Pontryagin-Cartwright Theorem
the topological dimension & 1is the same as the algebraic dimen-
sion of the Fourier-Bohr frequency module. We will show in Theorem
3 that for the induced linear eéuation y' = A(t)y one has 0e Z(4)
and that dim V (4) 2 %, where Vo(A) denotes the spectral subspace
of y' = A(t)y corresponding to.the spectral interval [do, bo]
containing X = 0. This then means that the center manifold for
¢ has dimension =2 £ and that it contains the hull H(¢). In
the event that the center manifold has dimension equal to &, then
the Hull H(¢) is locally homeomorphic to Rz. Since H(¢) is a
compact Abelian group, it follows that H(¢) is a Lie group and
consequently one has H(¢) is homeomorphic with TQ, the f~-dimen-
sional torus. |

As we shail see, the dimension of the center manifold can be
computed exactly in terms of exponential dichotomies for the
shifted linear equation y' = (4(#) - AI)y, where X\ is real.
The almost periodic theory described in the last pafagraph has the
following variation. Assume that there is a u<0 and a A > 0
such that both y' = (A(i)-—uI)y and y' = (A(t) - M)y admit

exponential dichotomies, and let lVu and 'NA denote the dimensions
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of the stable manifolds, respectively. Then NA - IVu > 2. (This

is a reformulation of the fact that dim VO(A) 2 &.) Furthermore

if NA

solution ¢(¢) is quasi-periodic (Theorem Uu4).

- Nu = &, then H(¢) is homeomorphic with 7t arid the

As mentioned above, the essential features of the spectral
theory for nonautonomous Ylinear differential equations will be
described in Section II. In Section I we shall state our main
result (Theorem 1) which describes how the stable manifolds, the
unstable manifolds and the branch manifolds are inherited by the
nonlinear equation (3). In Section IV we shall interpet this
result in the case that the given solution ¢(¢) 1is almost
periodic in ¢.

The proofs of the results describe in this lecture can be

found in [10, 13, 1u4].

IT. Linear Theory. = Let M" denote the collection of all

(n x n)-matrix-valued functions A(t) (¢t € R) with bounded uniform-
1y continuous teal coefficients. We assume that M’ has the
topology of uniform convergence on compact sets. For each 4 «¢ T
we define the translate A by AT(t) = A(t + ¢£). The mapping
c(4, T) = AT then determines a flow on M*. The hull of 4 1is
defined by H(4) = CZ{AT: T ¢ R} and is an invariant set for the
flow o. Furthermore it follows from the Ascoli-Arzeld Theorem
that the hull H(4) 1is a compact subset of Mn, cf. [11, 121].
For each 4 ¢ M* and =z « Rn, we let ¢(x, 4, t) denote

the solution of the initial value problem ' = A(£)x, x(0) = x.

The function ¢(x, 4, ¢) 1s linear in =z, and the equation
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o4, tlx = ¢(x, A4, t) defines a linear operator &(4, t) on R
The operator @®(4, t) is the fundamental matrix solution of
z!' = A(£)x. The mapping = defined by
C omlx, 4, ) = (6(x, 4, t), o(4, )
is a linear skew-product flow on X x M*, cf. [9].

7 . .
denote a norm on R . Then define a matrix norm

Let |-

-] by the usual equation |B| = sup {|Bx|: |x| = 1}.

Let A be a nonemptyAsubset of M*'. We shall say that P

is a projector on A if for each 4 ¢ A, P(4) 1is a projection

in E' and the mapping (4, z) » P(4)x 1is jointly continuous

in (x, 4) € R" x A. We shall say that 7 admits an exponential

dichotomy over A if there is a projector P on A and constants

X¥>1 and o > 0 such that

-a(t-s)
e

(4) loCa, &) P(4) &' (4, 8)| < & , s <t

loCa, )[I - ()] 8724, s)| < ke @878 4 <

for all 4 ¢ A. In the event that A consists of a single point
{4}, this is the sténdard notion of an exponential dichotomy for
the differential equation ' = 4(¢&)x, [3]. Itiis shown in [9]
that if @ admits an exponential dichotomy over the single point
{Ao}, then 7 admits an exponential dichotomy over the hull Z(4,).
Let 4 ¢ M* and consider the linear differential equation
(5) x! = A(t)x. |
If one makes the change of variables y = e_xtm, where )X is
real, then Eq. (5) becomes the shifted equation
(6) y' = (4(e) - AI)y.
The new coefficient matrix (4(¢) - AI) is an element of M”.

Let QA(A, t) denote the fundamental matrix solution of (6),

45
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then ©@,(4, t) = e_kté(A, t). For A € R we define the stable

and unstable subspaces by

{x ¢ B": |e " d(x, 4, t)] > 0 as t + +«}

SA(A)

u, (4) {x ¢ R": e (xy, Ay, )| = 0 as t »+ -w},

Let 4 ¢ M*., We define the resolvent set p(4) as the

collection of all A ¢ R such that Eq. (6) admits an exponential
dichotomy. The spectrum L(4) is the complement of p(4).

If X e p(4), then for all B ¢ H(A) the linear subspaces
SA(B) and .UA(B) are complimentary, i.e. SA(B) n UA(B) = {0}

~and B" = SA(B) + UA(B). Moreover, the linear skew-product flow

my(x, B, t) = (e_Xt¢(x, B, t), o(B, t))
admits an exponential dichotomy over H(4). This in turn,’implies
that the subspaces SA(B) )and UX(B) vary "continuously" in
B ¢ H(A), since they are, respectively, the range and null space
~of the projector associated with the exponential dichotomy, cf.
[9] for details. |
The following Spectral Theorem is proved in,[lO]:

Theorem A. Let A4 ¢ M* where n 2 1. Then the spectrum

£(4) is the union of %k nonoverlapping intervals

2y =%, la,, b,

where 1 £ k £ n. Furthermore associated with each spectral

interval [ai, bi] and each B e H(A) there exists an integer

n; (independent of B) and a linear subspace Vi(B) of R"

with dim Vi(B) =n, and such that for all B e€ H(4) one has

(i) 1< n, and n, + ...+ ny = Mo

(ii) Vi(B) n Vj(B)v= {o} if < # 4

(i) B = V(B + ...+ VB,



(iv) V.(B) = S.(B) n U (B) whenever (u, A\) n 2(4) = [a..b
i A " whenever i

Moreover the linear subspaces Vi(B) vary continuously in B.

The subspace Vi(B) is called the spectral subspace associ-
ated with the spectral interval [ai, bi]'

For each A ¢ p(4), the flow admits an exponential

A
dichotomy, which means that there is a projector P (depending
on A) and constants K=1 and a > 0 so that Ineq. (4) holds

with ¢ replacing ®. The constants X and o also depend on

A
A. In order to build some uniformity into the theory, we define
p(4, K, a) to be the set of A e p(4) such that there is a
projector P on H(4) with the property that

e-a(tes),

A
<+

(7 |0, (B, £)P(B)O) (B, s)| = K

e—u(s—t)

o, (B, ﬁ)[I-—P(B)]@Xl(B, &) = x , ¢t < s

for all B e H(4). . It is now easy to verify that the following

Standing Hypothesis is always satisfied:
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i]'

Standing Hypothesis: Let 4 ¢ M*  and let £(4) =[l§:1[ai, bi]

denote the spectrum of A. Assume that the intervals [ai, bi]

are ordered so that

§ bk'

' Then there exists constants X > 1 and a > 0 so that (4, X, a)
}

that satisfy

contains points {A

(8) A < a. £b. <A < a. £ ... <A < a, £ b, < A

II. The Invariant Manifolds. In this section we will

describe how the structure of the linear equation

x!' = A(E)x
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is inherited by the nonlinear equation

(9) x!' = 4(t)x + Flx, t)

where 4 e,Mn, F ¢ F and F is the collection of all functions
F(x, t) from " x R to R" satisfying.

Hypothesis H. F 1is Lipschitz-continuous in x, F(0, %) = Q

for all ¢t and for every 6 > 0 there is a & > 0 such that

[Pz, t) - F(y, )| < 6lx - y|

for all =z, y in r" with lz] < 8, |y] £ &, and for all t e R.
Let 4 ¢ M" be fixed. A local flow can be generated on the
spaces R" x H(4) x F as follows: First we assume that F has
the topology of uniform convergence on compaét sets. Then for
G e F and B e H(4), we let o¢(x, B, G, t) denote the unique
‘noncontinuable solution of the initial value problem
(10) @' = B(t)x + Gz, ), x(0) = zx.
The solution ¢(xz, B, G, t) need not be defined fbr all ¢ e R
because of the so-called finite-escape phenomenon. Nevertheless
¢ depends continuously on (x, B, G, t) and the mapping
m(x, B, G, T) = (cp(x, B, G, 1), B_, GT]
defines a local flow on R" x H(4) x F, where GT(x, t) = G(x, T-ff
cf. [11, 121. - |
For F ¢ F we define the hull HA(F) as
H(F) = CL{F_: T ¢ R}.
It follows from the general theory of flows that the hull H(F)
is an invariant set in F.
Let ¢(x, A, F, t) be a solution of (9) that is defined for
all- ¢ 2 0, or t < 0, where « # 0 and define the Lyapunov

characteristic exponents by

lim sup L log|o(x, 4, F, )],
t>+o

Ve, 4, m = A @)

<+

- 10 -



A (x, 4, F) = A" (x) = lim sup % log|¢Cx, 4, F, t)],
t>=

pespectively.

It is convenient to study, for certain purposes, the restric-
tion of the local flow ™ to smaller regions in the x-space.
More precisely, let a > 0 and define D, = {¢ ¢ B": |z| < a}.
Then the restriction of the différential equation (9) to D,
defines a local flow on D, X H(A) x F. We shall call this flow

the induced flow on Da x H(A) x F. Notice that a set

reb, x H(4) x F is an invariant set in‘the induced flow when-
ever one has |
(x, B, F) ¢ ' =>7m(x, By, F, t) € T er all ¢t e I
where I 1is the maximal interval containing 0 for which
|¢(x, B, F,kt)] <a for all t e I.
We are now prepared~to/state our main result.

Theorem 1. Assume that

x' = A(t)x + Flx, t)

is given where 4 «¢ MnV and that the Standing Hypothesis is satis-

fied. Assume further that F satisfies Hypothesis H. Then there

is an a > 0 with the following properties:

(A) For A=A, (i=0,1, ..., k), B c H(4) and G e H(F)

there exist in R Lipschitz-continuous manifolds Si(B’ G) n Da

and Ui(B’ G) n D, homeomorphic to SA(B) n Da and UA(B) nD,,

respectively. Furthermore the sets

{(x, B, 6) ¢ X x H(A) x H(F): © ¢ §,(B, G) n D }
{(z, B, G) ¢ X x H(A) x H(F): = ¢ U (B, G) n Da}

are invariant sets in the induced flow on Da x H(A) x H(F).

Moreover, Si(B’ G) n Da contains the set
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v

{z e D_: |6(x,8,¢,8)| < a for all t >0 and A (x,8,8) < At

and Ui(B,‘G) n Da contains the set

IA

{z e D : |¢(x,B,G,t)] < a for all ¢t < 0 and A (x,B,G) > At

(B) . For u = A, , and A = Ai (2 =1, ...5 k)Y, B e H(A)

and G ¢ H(F) there exist in R" Lipschitz-continuous manifolds

W,(B, G) n D, homeomorphic to Vi(B) n D . Furthermore the set

{(x, By, G) € X x H(A) x H(F): = « W, (B, G) n Da}

is an invariant set in the induced flow on Da X H(A) x H(F).

Moreover, Wi(B, G) n Da contains the set

- +
{sta: |¢(x,B,G,¢)| <a for all teR, u<A (x,B,6) and A (x,B,G) <A},

In particular if n < 0 and A > 0 then Wi(B’ G) n Da contains

the set
: - +
{xeDa: |¢(x,B,G,t)| <a for all ¢teR and A (x,B,6) =X (x,B,G) =0}.

The manifolds Si(B’ @) n Da (¢ =0, 1, ..., k) are called

the stable manifolds for Eq. (10). The manifolds Ui(B’ G) n D,

(2 =0, 1, ..., k) are called the unstable manifolds for Eq. (10).

These manifolds have the same dimensions as the corresponding
stable and unstable manifolds for the linear equations «x' = B(t);
or x' = A(¢)x. The manifolds Wi(B’ G) n Da (z =1, ..., k) are

called the branch manifelds for Eq. (10). They have the same

dimension as the corresponding spectral subspaces for the linear

equation x' = A(¢)x.

Remark. 1. Let us now return to the '"center manifold".
Once again consider the equation
(11) x' = A(t)x + F(z, t)

where 4 « M*  and the Standing Hypothesis is satisfied and where

F satisfies Hypothesis #. Assume now that A = 0 4dis in the

- 12 =
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spectrum Z(4) and let [a,, b;]1 denote the spectral interval

0
containing 0.. Let V (4) denote the corresponding spectral sub-
gpace in R" and let n, = dim VO(A) 2 1. Let W (4, F) n D,

denote the corresponding branch manifold for the nonlinear equation

(11). The manifold’ WO(A, F) n Da is called the center manifold

for (11). It has dimension =, . Next set u = Aioy and’ A=A
where 1 < 0 < A. Then the stable manifold Si_l(A5 F) n D, has
dimension &, and the unstable manifolq Ui(A’ F) n Da has dimen-
sion m where £ + m + n, = n. Furthermore for any
r € Si—1(A’ F) n Da one has

|¢(x, A, F, t)]| < lele‘Bt, t =0,

and for any x ¢ Ui(A’ F) n Da one has

|¢Cx, 4, F, t)]| < lelest, t <0
where L and B are appropriate positive constants. The three
spaces Si—l(A’ F) n Da’ WO(A, F) n Da and Ui(A’ F) n Da show
that the trichotomy

X = SH(A) + UV (4) + UA(A)
for the linear equation x' = A(t)x 1s inherited by the nonlinear

equation (1l1). We also have the following result.

Theorem 2. Let 4 ¢ M? and choose Uy, A ¢ p(4) with
o< AL A

(A) If there is a B ¢ H(A) and an F ¢ F with the pro-

perty that for every ¢ > 0 there is a nonzero 'vector « e D

a
with |¢(x, B, F, t)| < a for all t ¢ R and with

< A (x, B, F) and A+(x, B, F) < A, then the spectrum Z(4)

meets (pw, A), i.e. IT(4) n (u, A) # ¢.

(B) Assume that Y < 0 < A. If there is a B ¢ H(4) and

- 13 -
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an F e F with the property that for every a > 0 there is a

nonzero vector x ¢ D such that |¢(x, B, F, t)]| < a for all

t ¢ R and A (z, B, F) = \'(z, B, F) = 0, then 0 ¢ Z(4).

IV. The Flow in the Vicinity of an Almost Periodic Motion.

Let &« = ¢(¢) Dbe a given almost periodic solution of the autono-
moué differential equation «' = f(x)' on R" with ¢%-coefficients.
Let H(¢) = ¢l {¢(1t): t© ¢ R} denote the hull of ¢. The space
H($) is the space of a compact Abelian topological group with a
dense subgroup'parameterized‘by the additive group R, cf. [7, 12].
Let & denote the topological dimension of H(¢). By the Pontryagin-
Cartwright Theorem the topological dimension & 1is the same as the
algebraic dimension of the Fourier-Bohr fréquency module and
L sn -1, cf. [1, 87.

Let z = ¢(£) + y be a solution of =z' = f(x). Then y

satisfies the differential equation

(12) y' = ARy + F(y, ¢)

]
where A(t¢) = 55 2= () and F(y, t) = flo(e) +y) - Flo(e)) - 4()y.
Since A(¢) is almost periodic in ¢ one has 4 « M*.  Further-

more F satisfies Hypothesis H.

We shall now adopt the notation of Remark 1. In the event
that 0 ¢ I(4) we shall let la,, b,]1 denote the spectral
interval containing 0. Also V (4) will denote the spectral
subspace in &' associated with La,, b,] and finally we let

W (A, F) n D, denote the center manifold for Eq. (12).



Theorem 3. Let x = ¢(£) be an almost periodic solution

of z' = f(x) and assume that the topological dimension of the

—

hull H(¢) 1is & 2 1. Then the following statements are valid:

(A) 0 e Z(4) and dim WO(A, F) n Da = dim VO(A) > Q.

(B) If dim V (4) = &, then H(¢) 1is diffeomorphic with Tz,

the f#-dimensional torus, and the solution ¢(¢) is quasi-periodic,

that is, there exists a continuous function V¥: R2 > g" such that

Y@ s oves uz) has period 1 1in each variable and
¢(z) = ¥(a,t, ..., azt), t € R
for appropriate choice of constants Qs vy Qg

The following statement is simply a reformulation of Theorem 3.

Theorem 4. Let a = ¢(£) be an almost periodic solution of

z' = f(x) where f is a C?-function and assume that the topologi-

cal dimension of the hull H(¢) is & = 1. -Let ACE) = f _
is == dxtax=¢(t)

denote the linear part of f evaluated along ¢(£). ' Let p(4)

denote the collection of X ¢ R such that the linear equation

! = (4(e) - M)z

admits an exponential dichotomy. For each X € p(4) let NA

denote the dimension of the stable manifold for the associated

exponential dichotomy. Then the following statements are valid

(A) If X, uw e p(4) with u < 0 < A, then NA - Nu > Q.

(B) If A and u can be chosen in p(4) so that

N

M <0< A and Ny, - Nu = &, then H(¢) 1is diffeomorphic with Tz,

the f-dimensional torus, and ¢(#) 1is quasi-periodic.

- 15 -
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