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tability and existence of almost periodic solutions of

functional differential equations with infinite retardation

Yoshiyuki Hino

(Iwate University)

1. Introduction. Assuming the uniqueness of solutions for the
initial value problem, several authors discussed that the existence of a
bounded solution with some stability property implies the existence of
almost periodic solutions(cf. [3], [11]1, [14], [1e6l, [171).

Without the assumption that the solution is unique for the initial
value problem, Yoshizawa[1l8] and Kato[10] have shown the existence of an
almost periodic solution of almost periodic systems. They have considered
functional differential equations with finite retardation and required
the existence of a bounded solution with some(stability property. And
they have utilized the fact that any solution which takes its initial
function in a bounded set C = C([-h, 0], Rn)~at tg remains in a compact
subset of C for all t > t_ + h. It is known by Hale[5] that if the
retardation is infinite, the solution operator never becomes completely
continuous but is o - contraction of some order. However, we can find a
compact set which contains all of solutions in the hull of the boundea
solution. Therefore, by considering only the solutions in hull of the
bounded solution, we can introduce new concepts of stabilities, which we

called stabilities with respect to hull in [8]. Stabilities with respect
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to hull are weaker than the usual ones, because these stability propert-
ies do not necessarily imply the uniqueness of the bounded solution for
the initial value problem. By using the existence of a bounded solution
with some kind of stability with respect to hull, we shéll discuss thé

existence of an almost periodic solution of almost periodic systems.

2. Phase space B. The following Banach space has considered by

2 n .
,*¢¢, X ) be any vector in

Hale[l4t] and Hale and Kato[6]. Let x = (xl, X
R and let [x] be any norm of x. Let B be a linear real vector space of

functions mapping (-w, 0] into Rn with elements designated by ¢, y,

and ¢ = y means ¢(t) = y(t) for all t < 0. Assume that a semi-norm .lé
A . . ~

is given in B, and assume that B = B/I- é is a Banach space with the

norm ||y which 1s naturally induced by |'|§- B consists of equivalence

PN A~

classes ¢ of ¢ e B.

For a 8 > 0 and & ¢ ¢ B, let ¢° denote the restriction of ¢ to

(==, -B], and let

8 be a semi-norm in B defined by

lo], = inf{inf{f$|é: W& = 0By n = ¢}.

B A A aX

neB YPeB
For an R'-valued function x defined on a interval (=0, o) and for

ate (-, g), let x, be a function defined on (-, 0] such that

xt(e) = x(t+6), 06 < O.
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Given an A > 0 and a ¢ € B, let FA(¢) be the set of all functions x

defined on (-~, A] such that X, = ¢ and x(t) is continuous on [0, A],

and denote

Fp =lJ{FA(¢): ¢ e Bl}.

A
We assume that B has the following properties:

(I) Ifxe Fy» A >0, then x, ¢ B and x

(0,4].

(1) | ¢(0)] <M fol3

a ~

+ is continuous in t on

for some M. > 0.

1

(III) 1If a sequence {¢k}, ¢y € B, is uniformly bounded on (-, 0]

with respect to norm |~] and converges to ¢ uniformly on any compact

subset of (-—», 0], then ¢ ¢ B and |¢k - ¢|. >0 as k > =,

~

ws = $B}= $ €

By <%, 8

z
B

8 ¢ (==, -B].

;Bé and é € ;Bi.

T

: B85 8% = BY ||

(IV) If ¢ ="y in B, then |n - ng = 0 for any B > O, where n ¢

B

0, we shall denote an operator on B into BB = {{yeB:

} such that § e ¢ if and only if ¢(6) = ¢(6+8) for

~

Under this axiom, it is possible to consider a linear operator

B’
TB¢ = {w}s for
(¢

(V) |TB¢|B > 0Oas t~»

(VI) There exists a K

™

8

defined by

¢ € B such that @ € 585, {lP}B =
B: |¢ - wls = 0}.

0 such that for any ¢ in B and any o >0

3=



|61, < klint { sup li (0) v=¢}+ |¢lc]‘

BT e § moseso

(VII) B is separable.
Remark 1. Property (III) is equivalent to the following property:

For any b > 0 and € > 0, there exist an N > 0 and a § > O such that B€‘>

A A oA
{¢ € B: ¢ is continuous

Uy s~ %, where B, = (6 e B: [¢]3 < e}, Uy

on [-N, 0] and sup |¢(8)| < & and X, = {¢ € B: ¢ is continuous on
-N<b<o

(<, 0] and sup |6(8)]< b}. By Property @), if{ £"} is any sequence
~®<B<0 -

which is continuous and uniformly bounded on R, R = (=», »), and con-

verges to function v(t) uniformly on R as n > «, then ‘Ent - vt[B +>0

~uniformly on R as n > ®, Therefore, by slightly modifying the arguments
used in the proof of Theorem 1 in [T7], we can show that if g(t+tn)

converges to a function u(t) uniformly on I, I = [0, »), as n > ®, then

|g + 0 uniformly on I as-n > =, where £(t) is in F_and

L -yl ,
uniformly continuous and bounded on I and {tn} is a sequence such that

tn+“asn*m.

Remark 2. Hale and Kato[6] has pointed out that property (III)
implies that all bounded continuous ‘functions mapping (- o 0] into R™

-~

are in B.

_The following two spaces C and B have properties (I) ~ (VII) (ecf.

(21, 161, [71, [12]).

73



Example 1. Tke space ( consists of all continuous functions map-
ping (-», 0] imto R® such that ¢(8)eY® > 0 as 8 + -» with norm 8], =
sup |¢(8)]eye, vy > 0.
—w<6;o
Example 2. Let r > O, p > 1, and let g(6) be a nondecreasing
positive function defined on (-», 0] such that fo g(6)ds < =. The space
B consists of all functions ¢ mapping (==, O] in;: R?, which are

Lebesgue measurable on (==, 0] and are continuous on [-r, O] with norm

0
lol, = {0 sup |o(8)[® + s |'¢(e)[pg(e)de}l/p. When r = 0, we do not
-réeéo -0

assume the continuity of ¢ at 8 = O.

3. Asymptotically almost periodic solutions of almost periodic

systems. Consider an almost periodic system

(1) | ' ~ x(t) = F(t, %),

where F(t, ¢) i5s continuous on R x ﬁ‘,

n = {¢ e B: |¢|B < M}, and

almost periodic in t uniformly for ¢ € We assume that there exists

E?ﬂ = l

an L > 0 such that |F(t, ¢)] <L on R x E&Z Let £(t) be a solution of
(1) defined on I, which satisfies ]gtIB < B, 0 < B <M, for all t ¢ I.

Define S by

S={¢,: t

nv -

0, ¢ € S¥*},

where



s* = {¢ ¢ F; ¢(6) = £(8), 0 € (-, o], lo(e)] < Mls for all 6 >0

L|e - 8'| for any

D

and |¢(6) - ¢(6')|

A

, 8' > 0J.

Then S is compact, where S is cloéure of S, and £ ¢ S¥. For details, see
[8]. Let H(g), H(F) and H(&, F) be the hulls of &(t), F(t, ¢) and (&(t),
F(t, ¢)), respectively. H+(E), H+(F) and H+(£, F) are subsets of ﬁ(g),
H(F) and H(Z, F) whose elements are x(t), G(t, ¢) and (x(tj, a{t, ¢))
such that there exists a sequence {tk}, tk + © as k » © such that
E(t+tk) + x(t) as k > » uniformly on any cbmpacﬁ interval in R and
F(t+tk, o) > G(t, ¢) as k > uniforﬁly on R x E} respectively. C;egrly,
x(t) is a solution of x(t) = G(t, x,), if (x(t), G(t, ¢)) ¢ H(g, F).
Let £(t) be a continuous function defined on a St <o £(t) is
said to be asymptotically almost periodic if it is a éum of a cbntinﬁous
almost periodic function p(t) and avcontinuous functioniq(t) defined on

a <t <« which tends to zero as t + «, that is
£(t) = p(t) + q(t).

It is well known that f(t) is asymptotically almost periodic if and

only if for any sequence,{rk} such that 1, >« as k > = there exists a

subsequence {rk } for which f(t+rk ) converges uniformly on a < t < ®
j J
(ef. [19]).

Proposition’ 1{c} Theorem 1 in [8]). If the solution £(t) of (1) is

+
asymptotically almost periodic, then for any G e H (F), there exists a

-6~



sequence {Tk} such that &(t+t, ) tends to an almost periodic solution of

k
the system

(2) x(t) = 6(t, x,)
uniformly on R as k + =,

We shall define H+G(£) by

B (£) = {x(t): (x(t), G(t, ¢)) ¢ H (£, F)}.

Now we shall give definitions of stabilities with respect to hull

and some separation conditions.

Definition 1. The solutions in H+(E) are uniformly stable with
+ +
respect to H (&) with a common &8(+) (in short, u.s.H (£).6(+)), if for
+

any € >0,t eIand GeH(F), |x, -y, |
o) to to B
+

< e for all t > to’ whenever x(t), y(t) ¢ H

< 8(e) implies {xt -

Yelg olE).

+
Definition 2. The solutions in H (&) are weakly uniformly asympto-
+
tically stable with respect to H (£) with a common pair (Go, §(+)) ( in
+ ' +
short, w.u.a.s.H (g).(ao, 8§(*))), if the solutions in H (£) are u.s.

+ + .
H (£).$(+) and for any t eIland GeH (7)), Ixt - ytolB < §_ implies

Ixt - yt[B + 0 as t > ©, whenever x(t), y(t) ¢ H _(§).

G
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Definition 3. The solution in H+(g) are globally weakly uniformly
asymptotically sfable with respect to H+(g) with a common §(+) (in
short, g.w.u.a.s.H+(£).6(-)), if the solutions in H+(g) are u.s.H (£).
§(-) and for any G ¢ H+( F) Ixt - ytlB + 0 as t + «, whenever x(t),

y(t) e B (g).

Definition 4. The solutions in H+(£) are uniformly asymptotically
+
stable with respect to H (&) with a common triple (60, §(-), T(+)) ( in
+ +
short, u.a.s.H (5).(60, (<), T(-))), if the solutions in H (£) are u.s.

+ +
H (£).8(-) and for any € > 0, any t,eIand GeH (r), Ixt <

o C
<efortt + T(e), whenever x(t), y(t) €

_v g
e}
§o implies Ixt - ytlB

H G (£),

Remark 3. For ordinaly differential equations, the concept of
weakly uniformly asymptotic stability was given by Sell[17, 18].
Relationships between weakly uniformly asymptotic stability and uniform-
ly asymptotic stability have been discussed in [14, 19]. For a clas of
phase spaces for functional differential équations with infinite re-
tardation, Hale and Kato[6] have discussed relationships between weakly
uniformly asymptotic stability and uniformly asymptotic stability.rTheir
. space has not property (III) in our space but has the following property
which is stronger than property (V) in our space; For any M > O and ¢ >
0, there exists a T > 0 such that if ¢ € By and T 2 T*, then [TTélT < €.

+ s .
Definition 5. H (£, F) is said to satisfy a separation condition if

-8-
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+ .. . +
for any G € H+(F), H G(g) is a finite set and if ¢ and y, ¢, ¥ € H G(g),
are distinct solutions of (2), then there exists a A(G, ¢, ¥) > O such

that |¢t - ¢t|B > A(G, ¢, ¥) for all t e R.

Remark 4. The separation condition on H (£, F) is weaker condition

that Amerio's condition[1].

’ +
Proposition 2.(cf. Theorem 5 in [8]). Suppose that H (£, F)

satisfies the separation condition. Then £(t) is an asymptotically

almost periodic of (1).

Proposition 3. The following three propositions are equivalent:
+
(i) H (&, F) satisfies the separation condition.
+ + .
(ii) The solutions in H (£) are w.u.a.s.H (5).(60, s§(-)).

(iii) The solutions in H+(€) are u.a.s.H+(£).(60, §(+), T(-)).

Finally, we shall discuss the existence of an almost periodic
solution of a linear almost periodic system. Let the sﬁace C and B be

the same ones given in Examples 1 and 2 in Section 2 and

be the

Euclidean norm.

Proposition 4. Suppose that A(t, ¢) is continuous in (t, ¢)e
"R x ¢ (R x B), linear in ¢ and almost periodic in t uniformly for ¢ and

that the null solution of the system



(3) o x(t) = A(t, x,)

is uniformly stable.

Then for any almost periodic function f(t), the system
() x(t) = A(t, x.) + £(t)
has an almost periodic solution, whenever it has a bounded solution on I.

We shall prove only the case where the phase space is (, because
the case where the phase space is B can be shown by the completely same
. 3 0 2 2y6, ,1/2
way by replacing |¢|, = {/ [¢(6)]|“e“" a6} / by

00

{]4(0)]% + fO I¢(e)12g(e)de}l/2, if r =0,

l¢’ ® =
0 0 o
I lo(e)|%ae + 1 [o(e)[%e(0)a0}/?, if r > 0,
-1 -0 .
in the following proof.

" Proof of Proposition 4. Since A(t, ¢) is a linear almost periodic
" function and £(t) is almost periodic, there exists a solution p(t) of
(4) which is defined and bounded on R (shortly, R-bounded) and satisfi-

es sup Iptl* = A(A+f), where
teR

. =10-



§U

A(A+F) = inf{sup !xtl*: x{t) is an R-bounded solution of (L)}.
teR

For detailes, see [9].

We shall show that the solutions in H+(p) are g.w.u.a.s.H+(p).6(-).
Then system (4) has an almost periodic solution by Proposition 1, 2 and
3.

Since p(t) is R-bounded, there exists a 8 > 0 such that |pt| <8

for all t e R. Let B(t, ¢) + h(t) be in H' (A+f) and assume that ql and

2 . + 1 2
- R
q” are in H B+h(p) and [q to a to{C < 8§(e/b) for some to e R and €,

0 < g < B, where 8{+) is the one given for uniform stability of the null

solution of (3). Put z(t) = (ql(t) - qz(t))/2, then z(t) is the solution
of
(5) x(t) = B(t, x,).

t

Since every solution of (5) is unique for initial value problem (cf. see

Theorem 2.2 in [6]), we have

|z <e/2 for all't > tos

ele

+ +
which implies that the solutions in H (p) are u.s.H (p).8(-).

>

Hence Iztlc + 0 as t > @ or there exists a a > 0 such that |zt]c >

a for all t € R. Since |+| is the Euclidean norm, we have

1,42 2 (2 2 2
{Iq t[* + ‘q t‘*}/g = |yt‘* + !Ztl*’

=11~



where y(t) = {ql(t) + q2(t)}/2, which implies inf ]ztl* = 0, because
teR
ql(t) and qg(t) are solutions which satisfy

sup |at]y = sup [o®], = A(A+f) = A(B+n).

teR ) teR

i}

We can show that inf |Ztl* = 0 implies inf |z 0 (see, [9]). There-

teR teR
ele
s.H+(p).6(v). This completes the proof.

ele
fore [qlt - q2

Remark 5. For ordinary differential equations, Nakajima[13] has
shown that if the conditions in Proposition 4 hold, then system (k)

satisfies Favard's separation condition.

-1z-

+
+ 0 as t + «, Thus the solutions in H (p) are g.w.u.a.
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