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On autonomous linear functional differential

equations with a phase space of general type

Toshiki NAITO

The University of Electro-Communications

1. Introduction. We consider returded functional differen-

tial equations
(1.1)  dx/dt = f(t,x¢), xt(8) = x(t+6), 6&[-r,0].

For a function ¢ defined on [-Tr,0], we denote by x(t,o,¢) the
solution of (1.1) with the initial condition x0(0,¢) = ¢. |
When the retardation is finite, i.e., r< o, Xx4(0,¢) 1is a
continuous function on [-r,0] for t > o+t whether ¢ is contin-
uous or not. Hence, we choose for the space of initial data the
space of continuous functibns on [-r,0]. Howevef; when the
retardation is infinité, i.e., T =, x¢(o,p) depends on ¢ in
such a way thét Xe(@,0)(0) = ¢ (t-o+6) foro < -(t-o). 'If ¢
is' not continuous, x¢(0,p) is never a continuous function on
(—m,Oj fdr_any t > ¢. There are many possibilities of the

choice for the space of initial functions.



Example 1.1 ([2]). Space of integrable functions. Let

dg = {$ :(-» , 0]2RM measurable and l$|f < }, where
: B
A ~ 0 ~
I¢I& = l¢ ()] + s g(e) |¢ (o) |de

with g:(-~, 0] = Rt which satisfies some conditions.

Example 1.2 ([3],[8]1). P = {$ (- ,0] » Rn measurable

on (-» , 0], continuous on [-r,0], T > 0, and [¢%% <o} where
~ 0 ~

up |3 (0)] P+ Log@)16(O) [Pae}l/P, p > 1,

<

with g:(-« , 0]~ R+which'satisfies some conditions.
Example 1.3 ([61). Space of continuous functions. For any
YER, let B = {6€C((-w , 0],RM):e"%60(0) + a limit as 0> -w} ,

and iet

With the space of Example 1.1, Coleman and Mizel dicussed
the existence, the uniqueness, the asymptotic behavior of
solutions ([2]). The linear functional differential equations

with phase spaces above are studied in [4], [7], [8], [9], and
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[il]. Assuming that the phase space satisfies some conditions
common to the above examples, Hale discussed the asymptotic
behavior of solutions in [3] (see also [6]). Recently, in [5]
Hale and Kato have presented new axioms and hypotheses for the
phase space which seem to be natural. The all spaces listed
above have these properties. In this lecture, we consider the
solution operator of autonomous linéar functional differential
equations with this phase space.rThe theory given here is an

extension of the one developed in [8].

~

2. The space:fS. Let ¢ be a linear space of functions
mapping.(-m,O] into C™ with elements designated by &, &, cee
and ¢=¢ means ¢(t)= Y(t) for all t<0. Assume that a semi-norm

is given in(8 , and assume that

B

is a Banach space with the norm which is naturally induced

by A - ggconsists of equivalence ciasses ¢ of $e&% 1 =
veB : |ip-(¢|£ = 0} . Given an A > 0 and a $€Ji’> , let FA($) be
~ the set of all functions ; defined on (-«,A] such that ;0 = $

and x(t) is continuous on [0,A], and denote

Fo =\ FA($) : vepP} .

AN
We assume that4ﬁ has the following properties, which are



choosen from the ax1oms and hypotheses presented in [9]

(i) thﬁ and Xt is continuous in t on [0,A] for all
xéFA 7 B

(ii) |¢A> (0)}; K |$l for any J)e& \and some K.

ofd% as

For any B >0, we define semi-norm |-

FERNIOL

161, = inf [§]., 16lg = inf{[0], : 6(0) = 9(0),0& (<m,-p]}
B des 87PN .

0] (g™ aznfm(g), 'WB) inf{|o]. : $(0) = 5(0),0€[-8,0])

N(a
The following ineqpality is quite natural and useful.

‘(iii) lo] < |¢| (B) ‘I(MB for any 8 > 0

Let 050 = {¢ G{B: ¢(0) = 0} . We assume that the operator S(t) 1is

well defined on (BO in such a way that S(t)q)B;t.& ", where

| A
1
ct

Apa ‘$(t+é) for 6 <
3% (o) { |

0 -~ for 6 > -t

The assumption on S(tj is
(iv) iS(t) }t>0 is a strongly contlnuous semlgroup of
bounded 11near operators on &3

The next assumption will be used to obtain concrete representa-

tions of some elements in .

(v) If {<bk} converges to ¢ uniformly on any compact set in
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(-~,0] and if {¢k} is a Cauchy sequence in d%, then %e&&éand
¢k+ ¢ as koo |
Let ;,aJECn, be a function such that £(®)=a for o € (-»,0].
We assume that
(vi) ;egs for any ae€CP,
and denote by a the element of (8 determined by a é(}% .
The following assumption will be needed to prove the compactness
of the operator U(t) which will appear in Section 3.
(vii) There is a continuous function Kj(g) of g> 0 such

that

where

lolrg,0p = inf f;ggiolcb(e)lz d€0}.

3. The solution operator. Consider a linear functional

differential equétion
(3.1) dx/dt = L(x) ,

where L is a bounded linear operator on f§ into CR,
Assume that the solution x(t,¢)=x(t,0,¢) of (3.1) exists on[0,x)
uniquely for any ¢ inﬁi and assume that the operators T(t)

defined as

T(t)d = x¢(¢) for t >0, ¢ec@
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make a strongly continuous semigroup of bounded linear operators

on dg. Let U(t) be an operator defined by
T(t)¢ = U(t)¢ + (P , t20, ¢ B
where
p¢=¢*z¢-W, o €,

which isclearly a projection operator mapping Cé ontod%o.
A
Then U(t)¢ is the equivalence class of €+ for t > 0, where

~

€ 1is a function on (-«,#%®) such that

. x(t,0) = $(0) + SoL(xg(o)ds for 20
(3.2) g(t) = :
$(0) for t<0 .

Using the'aSSumptioné (iii), (iV), (v), (vi)‘and (Vii)-andhthis
representation of U(t), we can prove that U(t) ig é cOmpaCt
operator (see [5]). From this fact, Hale obtained the following
result (Theorem 3.1). |

For any bounded set X of a Banach space, put a(X)=inf{ d>0
; X has a finite cover of diameter <d} , which is called the
measure of noncompactness of X.’For example, a(X)=0 if and
only if X is relatively compact. For any continuous operator T
on a Banach space into a Banach space which takes bounded sets

into bounded sets, define o(T) by a(T) = ihf {k: o (TX)<ka(X)
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for all bounded sets X

If T is a bounded linear operator, then o(T) ;|T| |

T is a compact operator if and only if o(T)=0. It is known that
the raduis ro(T) of the smallest‘dosed disk in the cbmplex plane
with cénter zero which contains the essential spectrum-of a |

bounded linear operator T is given by

(3.3)  1o(T) = lim o(T™/™

n—>00

(see [10]).
Now, we will compute 1g(T(t)). Since U(t) is a compact

operator, it is easy to see that
a(T(t)) =a(S(t)P) for t > 0

Since {S(t)} is a semigroup on the range of the projection P,
we  have S(t)?S(s)P=S(t%s)P for t,s>0. Using this and the formulé

,(3.3), we obtain

Te(T(t)) = re(S(t)P)

Browder proved that the point XAy of the spectrum of a closed
‘linear operator T does not lie in the essential spectrum if and
only if \/N(( AgI- -T)™) is of finite dimension and the resolvent
(A I- T) lnis holomorphlc in the neiborhood of XO and has a pole
at A ([1]). U51ng thlS result, we can easily prove that the

essential spectrum of S(t)P coincides with that of S(t).
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Hence we have
e (S(t)P) = re(S(t))

Let B be the number defined as

(3;4) 8 = 1ip 108 o(S(t)) _ ;,¢log alS(t)) ¢ o
tso - T t>0 t

Then, it follows that

lim o(S()MH/™ = o8

N0

Finally, from the relations above we obtain

ro(T(t)) = otf

" This implies the following theorem.

Theorem 3.1.

{ A€ C: Rers g P (MY p(A) .

4. The point spectrum and the resolvents of A. Let V()) be
the linear subspace of ch consisting‘of vectors b& C" such that

@(A)béag , Where g(k)b is the equivalence class of the function
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exeb, 6 & (-m,O]. Define a linear operator A(M):V(\)~ ¢ as
AMNb = 2b - L(w(A)b) for bEV(A

Theorem 4.1 ([5]).

P5(A) = {xe€C; dim kerA(A) # 01} .

Proof. Suppose that A lies in Py(A). Then, there exists a

b B, ¢ # 0, such that A¢ = A¢p, which implies

At¢ for t>0

(4.1) T(t)d = e

For a ¢&¢ , define the function X(t) by

v
(=]

~ {(T(tmm) =) Tt
(4.2) x(t) =

b (1) ot

A
(an]

Since x4 € T(t)¢, relation (4.1) implies that ots e_htxt is in

A

¢ for t >0. From definition (4.2) of x, we have
te) = e Mx(t+0) = %0 (0) for 6 > -t
Hence, the sequence {¢ }k 1 ofkﬁ converges to eke¢(0) uniformly

on any compact set of (-%,0]. Since ¢&E ¢7for k=1,2,..., {¢k}

is a Cauchy sequence of & . Therefore, hypothesis (v) implies
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w()e(0) = ¢, and also we have that ¢ (0) # 0. Since ;(t) is a

solution of (3.1), it holds that
re? T (0) = dx/dt = L(T(1)$) = L(e* %) = LM w0 (0))
which implies that
A(X)$(0)= X¢(0)" L(w(A)¢(0)) = 0
Since ¢(0) # 0, it follows that dim kerA(A) # 0. It is easy to
prove that if dim kerA()) # 0, then X lies in Ps(A). Q.E.D.

The following proposition is proved from hypothesis (v).

Proposition 4.2. Let g(t) be the function defined in (3.2).

Then, the integration fge-xSU(s)¢ds is the equivalence class of

the function of @ given by

s e ME(s+0)ds, 0 € (-=,0]

Let Y be a number such that

v = 1lim log|S(t)|_ inf log i(t)l

t> t t>0

8

It is trivial that B<y (see (3.4)). From the definition of semi-

norm

'l(t)’ t>0, we have the following proposition.

Propdsition 4.3.

10
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o mAS @ 1 _-As \ : '
Ifte S(s)¢*ds|(t)i ,ft le ||S(s)¢*|(t)ds = 0 for ¢QB,
where Re A>Y |
Pfeparing these propositions, we can prove the following
' theorem.

Theorem 4.4. Let A€ C be a number such that Re A>Y and

A,%’PG(A),‘WhiCh implies A& p(A) (Theorem 4.1).

'Then, the‘re501vent R(X3A) = (XI-A)-1 is given as
R(A;A)0 = w(M)b + A1G0) + s5e™Ss(s)o*ds for €8 ,

where

AL = LATIE0) + S5e ASs(s)etds) .
~Let B be the infinitesimal generator of {S(t)}t>0

It is known that X is in p(B) for sufficiently large A > 0 with

the resolvent

(4.3)  R(A;B)G =vf?efXSS(s)¢ds for vERB, -

Theorem 4.5

AG = Tim DBR(HBYO* +u()A() TL{EOIAROGB)0))

if and only if this limit exists.

11



Proof. For sufficiently large ) > 0, we have from

Theorem 4.4 and relation (4.3) that

R(A;A)¢ - R(A;B)o*

1.._-6

= o)AMY + R(BYeY) + A7 1G(0)

Note that AR(A;T)¢= TR(A;T)¢ + ¢ for the resolvent of a closed

linear operator. Hence, it follows that

AR(A;A)¢ - BR(A;B)o*

) [ u——

=u(A)a(x) "L(¢(0) + AR(A;B)¢%)

Since AR(A;A)¢ approaches ¢ as A > ®, we obtain Theorem 4.4.
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