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A Construction of Approximately Finite-Dimensional

non-ITPFI Factors

E. J. Woods (Queen's Univ. & RIMS, Kyoto Univ.)

The following is a report on some joint work with

A. Connes which was carried out in Paris in January, 1976.

A von Neumann algebra is said to be‘approximately finite-
dimensional if 1t is of the form

M o= {Mec M c ... < Mn¢ TR
where each Mn is a finite—dimensipnal matrix algebra. A factor
is sald to be ITPFI 1f it is of the form

M = HE (M_,w)

where each Mn is a type I factor (and Wy is a state oA Mn)'
The existence of factors which are approximately finite-dimensional
but not ITPFI.is an interesting problem. The first construction
of such factors was given by Krieger [Q]. However in [¥] it
is only proved that the factors are not'"weakly equivalent” to
any ITPFI factor. The first proof that these fadtors‘are not
ITPFI was given by Connes [3]. Alternatively one could now use
Krieger's theorem [94 ] that unitary equivalence implies "weak
equivalence" to complete the érgumeht.‘.HOWever Kriégér's consfrﬁction
is rather involved, and the arguments of both Krieger [ ] and
Connes [3 ] were quite delicate. We give here a new construction
for which, in the context of the flow of welghts, the argument is
rather‘elementéry.

Sec. 1 reviews the relevant aspects of the flow of weights [4 ],
and gives some terminology. Sec. 2 contains the technical lemmas.

In Sec.‘3 we discuss the examples.



1. Preliminary Material

Let M be a factor, Aut M the group of all automorphisms of -
M with the topology of pointwise convergence in the predual, and
Int M the subgroup of inner automorphisms of M. The flow of weight:
of M is an ergodic action of R: on some measure space (XM, uM).
The construction of (41 gives not the measure space, but the
measure algebra whose elements are unitary eQuivalence classes
[¢] of integrabie weights ¢ of infinite type. The flow 1s then
defined by FM(A) [¢4] = [A¢]. Let o & Aut M. The equation
Mod a [¢] = [¢ea] defines a Borel (and hence continuous)
homomorphism from the polish group Aut M into the polish group
of automorphisms of the measure space (XM,uM). Clearly a € Int M

implies that Mod a = 1. If M 1s a factor of type III, then the

0

flow of weights \) for M@M 1is given by the action of

Fyuem
FM(X) ® 1 on the measure algebra of the FM(A) (+2] FM(J\"l)
invariant sets on XM X XM'

Ali Borel spaces considered in this paper are standard
(i.e. Borel isomorphic to a Borel subset of the unit interval).
A transformation S on a measure space (X,u) 15 called non-singular
if it is invertible and both S and S"l are u-measurable. Given a
non-singular S, the orbit of x under S is the set
og(x) = {sIx: J € z}.
The full group of S 1s the set [S8] of all non-singular

transformations T such that for a.e. x, Tx € OS(x). A set WC X

such that u(SJw(\ SKW) = 0 for all J # k 1s called a wandering
set for S. S is sald to be dissipative if there is a wandering
set W such that X = \J sjw.
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2. The Technical Lemmas

Let ‘M be a von Neumann algebra, X,Y¥ M. The automorphism
o of M@M defined by the equation o(x®y) = y@x 1s called
the Sakai flip.
Lemma 2.1: Let M be an ITPFI factor, o the Sakai flip on M@ M.
Then ¢ & Int(M@® M).

Proof: Let M= @& (M ,0.) be given on @Q(H_,Q2 ) where
—_— n=1 "0 n’>’n

wn(x) = (xQn,Qn). Then M@M = @n(MnQMn,anwn) acts on

K=Q@ (H@H 0 &) Let y€ (MOM),, e > 0.

We can assume that ®n(§2n®9n) is a separating vector for M@M

(see lemma 3.15 of [2]). Hence there is a vector Y€K such that

P(x) = (x¥,¥). “By lemma 3.1 of [1] there exists m < = and

¥(m)€ @ (H @H), Nv(mll =1, such that Ny -v ] < ¢
n=1 ' €

wnere @
| oy, = Ym @ (@ (9,@9)).

€ n=m+1l

Let we be the state defined by ‘l’e, and let On be the Sakail

m

flip on @ (Mn®Mn). Then oy, = (om®l)w€. Hence
~ n=1 '

Mo - ole)w“ < 2e.
Since o is inner, it follows that o € Int(M@M). QED.
Lemma 2.2: Let R,S be non-singular transformations on the standard
measure space (X,u). If S is dissipative and R leaves invariant

(modulo u) all S-invariant measurable sets, then R & [S].
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Proof: We first note that if (E,v) is a countably separated
measure space and {:E E satisfies f(B) = (B) (modulo v)
for all measurable B E, then f(x) = x (a.e. v). Namely

let (Bn)n Ny Separate points in E. Then
x:rx) £xr @ U 8\ £(8))

which is a set of measure zero.

Now let W be a wandering set for S such that X = {J skw.

Let P, be the projectlion of X onto skw defined by ka =y if x =

k
for some J such that y & skw. Let A be any measurable subset of

o

s¥W. Then \J sPA 1is S-invariant and it follows that

p:...m

(P,RP )& = A (modulo w). Now clearly R & [S] if and only if

P RP,(x) = x (a.e.) for all k. QFED,

The following theorem uses the base and ceiling function
construction of a flow. For this purpose 1t is more convenient

to have the flow as an action of R rather than Rz. Hence we shall

use %;M(A) = FM(eA)»

Theorem 2.3: Let M be a factor of type IIIO whose flow of welghts

can be bullt under a constant celling function with a base

1

transformation T such that TR T ~ is dissipative. Then the

Sakal flip 04 Int (M@M) and hence M is not ITPFI.

Sjy
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Proof: . Clearly Mod o acts on XMx XM = (BXI X(BxI) by
0(x,8,y,t) = (y,t,x,s). Let E be any Tx T L invariant set in
BXB, op the flip on BXB. Then EXIXI is an’;M(A)@‘;M(-X)

invariant set in XM)&XM. Now assume Mod o = 1. Then OB must

l] by'the preceding lemma. But

preserve E, hence oj€ [TXT™
this implies that for a.e. (x,y) € BRB there exists an integer
n(x,y) such that

og(x,y) = (y,x) = (TR(%¥)y, gn(xy)yy

1.e. y€ OT(x). But OT(x) is countable. QED.

3. The Examples

It remains to demonstréte the existence of approximately
finite-dimensional factors of fype III0 satisfying the conditions
of Theorem 2.3. For this we first need the existence of ergodic

1 is dissipative. It is a

transformations T such that TXT
c1a§sical result 1in ergodié theory that such transformations exist
[6']. As a specific example, one can use the Markov shift
obtained from a two-dimensional random walk.(These transformations
preserve an infinite measure.) Thé existence now follows from
the fact that any flow arises as the flow of weights of some
approximately finite—dihensional factor [4 ,9 j. (The proof of
this in the general case is not so easy. However for measure
preserving flows the argument 1is not difficult (sge for example
L+

We remark that o €& Int(M@M) is not a sufficient condition
for M to be ITPFI. Namely let M be an approximately finite-dimengional

factor whose flow can be built under a constant celling function

5
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with a base transformation T which preserves a finite measure.
If T is a Bernoulli shift then M is not ITPFI [5]. But then

T o1l ois ergodic, and it follows easily that Mod o = 1. Hence
o e Int (M M) [4]. 1In fact if T is any ergodic transformation
preserving a finite measure, it follows from the proof of

part (2) of lemma 1 of [7] that Mod ¢ = 1 (see also [10]).
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