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Spatial Structures in Nonlinear Interaction-
Diffusion Systems‘ /
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1. INTRODUCTION. Recently nonlinear "reaction-diffusion" or
"interaction-diffusion” equations have been studied as models for

1

1,2 3,4 , 5,6
, 1n morphogenesis y

problems in chemical reactor , in genetics

7
in ecology '8

¢ in plasma physics9 and other fields. As will be seen, the
most interesting work is to analyze qualitative behaviors of solutions

of the‘equations. Most of equations are described by

= DU + F u).
Ut XX (x,0)

Here the state variable U denotes certain measures such as density,
goncentration, etc.. Restricting the boundary condition to no flux one,

we may say that the environment govering the state is homogeneous if F(x,U)
is independént of x, on»the other hand, if F(x,U) depends - on x, it is
inhomogéneous. In this paper we are interestéd in the latter case when

the heterogeneity is sufficiently small. This study is motivated by

Gierer and Meinhardt6. They proposed some models to»explain ﬁhe mechanism
of re-generation on hydra. The models are construcfed'such that Child's

gradient theory is combined with usual chemical reaction-diffusion

. ; . . 21
A part of this note is a short version of Mimura and Murray.
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equations in Turing's senses. This theory necessarily makes the

. ) :
environment inhomogeneous. The analyses of this model sSystem were done
theoretically as well as numericallye’

In this paper we consider a particular system which is one of prey-

predator interaction models with diffusion processes

u d.u + f(x,u)u - uv
XX

t 1

v a.v - g(v)v + kuv.

t 2 xx

Here u and v represent the population densities of a prey species and its
predatpr, f(x,u) is the reproductive rate of u which>depends on pésition
x, g(v) is the death rate of u and k is the frequency of encounters. We
intend to discuss spatial stiuctures of éolutions under no flux
boundary conditions. The mathematical tool used here is a perturbedrbi—
furcation theory. The rest of this éaper is an application of a singular
perturbation theory to the above system..

We show that there appears a striking spatial pattern although the
environment is slightly homogeneous. This result seems to explain the

bloom phenomenon of plankton in ecology.
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2, FORMULATION OF THE PROBLEM. ' From the discussion in Section 1,

our study of prey—predatot population interaction will be described by

(2-1) 4 U, =Dbu_ +F(x,0),
t ‘ . . ' . .
Here U = '(u,v}, D is a diagonal matrix whose elements are non-negative

constants dl and d2 and F(x,U) 1is given by

t
F(x,U) = ( e(x)f(u)u - uv, - g(v)v + uv ),
where we put k =1 for simplicity. We assume that £ and g are both
appropriately smooth in the quédrant (a,v) > 0, and that they satisfy
the following conditions:

(£-1) There is a constant c, >0 s,t. £(u) <0 for u> c

1 1’
(£-2) The £f(u) curve satisfies the Allee effect as shown in Fig.l.
{g-1) There is a constant c, >0 s.t. g(v) > c, for v > 0.
(g-2) g(v) 1is strictly monotone increasing as shown in Fig.2.

We assume that e(x) = e + e€e(x) for some positive constant e and a
bounded function E(x), € 1is a constant which measures heterogeneity in
environment. Moreover, we assume
(£g-1) There exiéts at least one positive constant solution U=
©(3,9) satisfying ef(3) = v and g(;) = u,
We consider-the initial-boundary value problem for (2-1)l in (t,x) ¢

Ri x I = (0,2) subject to the boundary and initial conditions

_ _ 1
(2—1)2 Ux(t,O) = Ux(t,l) =0, te R,
and

(2-1) , U(0,x) =U,(x), x € I.



The global existencevand uniquéness of smooth solutions to this

problem have been proved fully in various function spaces, if € is

sufficiently small].'z'13

( and,a=<>,

Remark 2-1. 1f dl and d2 are both large enough’, the solution of

(2-1) tends to be homogeneous asymptotically. That is, it tends to a
solution of an associated system of ordinary differential equations.14
Accordingly, our interest in (2-1) is that either ‘dl or d2 is not

large. In ecology, we sometimes encounter such cases, for a special

example, the reader may imagine "plant-herbivore systems".

) - ' . 1
3.BIFURCATION ANALYSIS, " Employing the Lyapunov-Schmidt method,s'16

one can demonstrate small amplitude heterogeneous steady state solutions

of (2-1). It is convenient to introduce a vector V = U - U, The

resulting system for v is

. 1
(3-1); Vv, =DV +G(x,V), (;,x) e R X1,
(3—1} | . V (£,0) =V (£,8) =0, ‘t ¢ R-
) 2 ) x 7 Tk ’ & +
and’
(3~1)3 vV(0,x) = Vo(x) = Uo(x) - U, xe€l.

Here G(x,V) = F(x,V + U). We may write G  as
G(x,V) = BV + H(V) + eR(x,V),

where B = {bij} is the Jacobi matrix of t(ef(u)u - uv, - g(v)v + uv)
at U = U, H(V) is a smooth nonlinear term satisfying H(0) = HV(O) =

0, and G(x,V) is a function of x and ‘U such that G(x,0) # O.



Our discussion is restricted to the case when B satisfies

(B"'l) - bll > 0’
(B-2) det B > 0
and

(B-3) tr B < 0.

Under the above conditions, we consider the bifurcation problem of the

stationary problem for (3-1)
(3—2)l DV:x + BVS + H(Vs) + ER(X,VS) =0, x €1,
s s
- = 2, = N
(3 2)2 Vx(O) Vx( ) 0

Here d = (dl'd2) is used as bifurcation parameters and it is assumed

to vary along any fixed path d = d(0) with one parameter o.

Lemma 3-1. Let the curves Cn be
nm, 2 nm_2 !
Cpi by = G Hb,, - a,G9%} =b b,

for n > 1. Then the bifurcation curve I' is given‘by

o

r=vu {dec|p <d <P},

n=1 n'n 1 n-1
2
where PO = bll(}oz and Pn (n > 1) * is an abscissa of the intersecting
p01pt of Cn and Cn+l'
(proof) The details are given in Mimura—Nishiura—Yamaguti.17

Here d = d(o) is defined more explicitly as follows:

(d-1) d:I0 -> Ri is a smooth mapping, where I0 is an open interval

. 1 . .
in R which contains 0.
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v

(da-2) d(0) 1lies on I' and d intersects transversally with T.

(a-3) d(0) is not an intersecting point of two points of {cn}.
Theorem 3-1. Let € be fixed sufficiently small, There exists

0
, s 1 2 2 ~
of solutions (o(p),V (u)) € R X {(HN(I)) Ao} for lul| < Mg where
[=~3

some constant u,. > 0 s.t. (3-2) has a unique one parameter family

: 2 S
H;(I) = closure of {c052%§~} n=0 P H (I) and O is an open set

A
in (LZ(I))2 with O € O. Here 0(0) = 0 when € =0 and
s
v (u) = u<1>n + o(u),

where Qn is the normalized eigenvector corresponding to the zero eigen-

value of
.(3—3)1 L{(O)Y =AY, x ¢ I,
(3-3___2 WX(O) = Wx(l) =0
d2
for L(0) = D(0) —5 + B.
dx
Theorem 3-2. The relation between 0, € and u is determined by the

scalar equation
3
opo + Bu + ye + n(o,e,u) =0,

where 1n 1is higher order terms compared with the first three terms.

oo and B are both some constants and Yy is defined by
Yy = (R(x,O),®;),
@; is the normalized eigenvector corresponding to the zero eigenvalue of

(3—4)1 L*(O)¥ =AY, x €¢I,



©) 5y

LAY

(3_4)2 . ‘YX(O) = ‘1’x(£) =0

rThe proofs can be obtained with the framework of "perturbed bifurcation

. 17,18
theory at simple eigenvalues" '

4. APPLICATION. Using the result in Section 3, we try to explain
the behavior of planktonic bloom. Assuming that the bifurcation path d =

d(o) starts from the stable region and goes into the unstable region, that

is,

dl(c) dl(O) + klo + 0(o) ,

dz(o) d2(0) + kzc + 0(o)

for some konstants k, < 0 and k2 > 0, then, after some calculation, we

1

see o > 0. Moreover we assume that d = d(¢) intersects with T f\cz,

and that e(x) is defined by

2 3%
_ ] 1, x e ( "4_1'_2)
e(x) = { ’
o, otherwise , .

for simplicity. Noting that

R(x,0) = °( e(x)£(@a, 0) and

cos 22X
* 2 2 t 2w, 2 L
<I>2 = ‘i‘ T > > (dZ (0) (7) -~ m22~1m12') ’
/{dz(O) E -m o+ m

L 22 12

we find Y < 0. Finally from an actual point of view, restricting to

stable solutions, B < 0 must be satisfied:.L8 Thus, the bifurcation
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equation in Theorem 3-2 1eads_to the bifurcation diagram displayed in
Fig. 3. This picture can be obtained by use of Thom's transvefsality}9
Thus, in the neighborhood of ¢ = 0, there appears spatial pattern and
both densities are higher on ( %—, 2-'Q-'-) compared with other interval.

Here we emphasize that the heterogeneity of both densities is striking

compared with that of environment. The picture is drawn in Fig.4.

5. SINGULAR PERTURBATION ANALYSIS. We next construct large amplitude
steady state solutions of (3-1) when dl is zero or sufficiently small.

We assume in this section that U is unique, and that € = 0. We

consider (3-2)in the special case dl = 0, The resulting system has

the form
(5-1)la ef(u)u ~uwv =0, x €I,
(S—l)lb . d2vxx - g(v)v+uv =0, x € I,

The boundary conditions are

(5-1) u(x) =vi{x)=0 at x=0 and 2.
2 X X

It follows from (5-1)la that

(5-2) u=0 or ef(u) =v.

Since f(u) has the nonlinearity called the Allee effect, (5-2) implies
that u generally takes three different wvalues for v, say hl(v)(= o),
h2(v) or h3(v) (h2 < h3). Thus three single equations are derived from

(S-leb:

i i .
-3). + = =
(5 3)l | d2vxx Gi(v ) 0 for i 1,2 and 3,



where Gi(v) = - g(v)v - hi(v)v. Now we can consider two different

kind of boundary value problems, One is that (5-3)i is satisfied in

the whole domain I, the other is that I consists of at least two
different parts of’ Ii (i=1,2 and 3 ) and that (5--3)i is satisfied

on each domain Ii. It is easy to infer that the former case implies
small amplitude waves, on the other hand, the latter produces large
amplitude waves..The‘latter seems to be interesting, though the following
problem happens: How Ii can be determined in I ? In order to‘study this

20,21

problem, we use a singular perturbation technique, We first

consider the stationary problem (3-2) with non zero but sufficiently

small dl,
s S, s S s

(5-4)1a , dluxx +ef(u)u -~-uv =0, xeI
s S, s s s

(5—4)lb dzvxx ~g(v)v +uv =0, xe€eI,

Suppose that there exists a solution (u(x),v(x))of the problem (5-1)

such that
lim us£X) = u(x) for almost all x € I
d. >0
and 1_
lim vs(x) = v(x) for all x eI .
dl > 0

Numerical evidences confirm the validity of this assumption., By

) - *
transforming from x to X 2 Y ‘where x* is an arbitrary fixed
Y d
seperating point between Ii and Ij (i #3), (5—4)1a is reduced to
' s s, s s s
- 4+ - = -
(5 5)la uyy ef(u”)u uv 0

With the aid of the continuity of vs(x) at the point x*, it follows



6)6
1 .

(5-6) ¥+ eftu®)u® - vxnu® =0, xe R,
la . vy

The reasonable boundary conditions for (5--6)1a is assumed to be

lim us(y) = ul(x*) and
(5-6), y > =
2 s 5
lim u (y) = u” (x*).
y >+

Here we must note that (5-6) is valid to O(l). Concerning the problem
(5-6), it is known that ther exists a solution if and only if

u, (x¥*)

(5-7) [ Hef(z) - vix*)}zldz =
u, (x*)

0%

This relation leads to the following results:
(N - I = Ilk) I, ap@
(2) , v(x*) is determined uniquely, say v;, which is
independent of seperating points x*.
Thus we can formulate the well defined boundary value problem in the whole

domain I, that is,

(5-8)lb dzvxx + G(v) =0, x¢1I,

(5-8)2 Vx(O) = vx(l) = 0,
where G(v) is defined by
< < y*
Gl(v) for O v vc
(5-9) G(v) =

G, (v) for v* < v < ef(u ).
3 c = max

For the problem (5-8), we can see that there exist heterogeneous
solutions v(x). Thus we find that there appear remarkable heterogeneity

\

10



in the solution u(x) which is determined by ef(u) = v,
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