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STABILITY OF PERIODIC TRAVELLING WAVE SOLUTIONS

OF A NERVE CONDUCTION EQUATION

KENJIRO MAGINU
Department of Mathematical Engineering and Instrumentation Physics,

Faculty of Engineering, University of Tokyo

l. Introduction

In this paper we consider the nonlinear partial differential

equation
u =u . - f(u) - w,
, (1)
W, = bu, b >0, -—®< X < o,

This equation was introduced by FitzHugh [3] and Nagumo, Arimoto
and Yoshizawa [5] as a simplified mathematical description of
the excitation of nerve membrane and the propagation of nerve
impulses on nerve axon. It is assumed that the nonlinear term
f(u) in Eq.(l) is a smooth function of u satisfying the follow-
ing conditions:

£(0) = 0, £'(0) > 0,

\ > 0 for all w in ( -, 0)\J(ul, u,) .
£ (u)

<0 elsewhere,
for certain u, > uy > 0, and
U
J f(u) du < 0. _ (2)

0

It is known that, if the value of b > 0 is.sufficiently small,
the partial differential equation (1) has two types of travelling
wave solutions, i.e. pulse travelling wave solutions and periodic

travelling wave solutions.. The former solutions correspond to
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solitary nerve impulses, and the latter solutions correspond to
spatially periodic wave-trains of nerve impulses.

A travelling wave solution with a propagation speed ¢ > 0 is

a solution of Eqg.(l) of the form
(u, w) = (¢(z;¢c), ¥v(z;c)), =z = X + ct,

where ¢ and y are functions which may depend upon c. It follows
that (¢(z;c), Y(z;c)) satisfies the ordinary differential equa-

tion

bgp = €O, = £(0) =¥ =0,

0. (3)

- cy, + b

A pulse travelling wave solution is a non-constant solution of

(3) satisfying the condition

lim (¢(z;¢), Y(z;c)) = (0, 0).
jz}-roo

On the other hand, a periodic travelling wave solution is given
as a periodic solution of (3).

It is proved by Evans [l1] that Eq.(l) has two pulse travel-
ling wave solutions with different propagation speeds ¢y and Cor
0 < ¢y < €y
fast pulse solution respectively. The existence of the periodic

They are called the slow pulse solution and the

travelling wave solutions is studied by Hastings [4]. He showed

that Eq.(3) has a non-constant periodic solution if b > 0 is

sufficiently small and the speed c is limited in a certain range.
Rinzel and Keller [6] studied numerically a case in which

f(u) is a piecewise-linear function of u given by

’ u for u < a,
f(u) = (4)
{u-1 for u > a, 0 < a < 0.5.



They whowed that, in this case, Eqg.(3) has a non-constant periodic
solution (¢(z;c), Y(z;c)) ifrc is iimited in the range cl'<c <C,.
This periodic solution depends smoothly on c and its minimum
period L(c) is a smooth functioh of c. »The form of L(c), in the
Case\the parameter a in (4) is not so small, is shown in Fig.l.
(See Fig.8 in Rinzel and Keller [6].) In this case, L(c) is

defined on the interval (¢, c,) and it satisfies

( < 0 for c < c <”cof

0 for c¢c =c

L'(c) 0’

0 for c0 < ¢ < co,-

R N
\'4

where ¢, is a certain point in (cl, 02). Moreover it satisfies

0
1lim L(c) = 1lim L(c) = + o,
c-+c1+0 c-+c2f0 .

Namely the periodic solution (¢(z;c), ¥(z;c)) tends to the fast
pulse solution as c +'cz—0 and to the slow pulse solution as

c > c,+0.

1
On the other hand, if the parameter a in (4) is very small,

the function L(c) is of the form shown in Fig.2. Namely, L(c)

is defined on the interval (cmin' c2), where Chnin 1S 2 certain
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positive number smaller than c,. It is a double-valued function

of ¢ on the range (cmi ' cl), i.e. there exist two periodic

n

gravelling wave solutions with the same propagation speedvc,

®min

called the long periodic solution and the short periodic solution

< ¢ < cyy and with different spatial periods. These are

respectively. The long periodic solution tends to the slow
pulse solution as ¢ » cl-O.
Let Lmin denote the minimum of the function L(c). For any

positive number g such that ¢ > Lm'

in’ there exist two values of

c, say Ei-and 52, satisfying

L(El) = L(Ez) = g, 0<cy <c,<c
This implies that Eq. (1) has two periodic travelling wave solu-
tions with the same spatial period £ and with different propaga-
tion speeds El and 62' They are called the slow f%-periodic solu-
tion and the fast 24periodic solution respectively.

Let us consider the case where f(u) is a smooth function
satisfying the condition (2). If f(u) is not deviated largely
from the peicéwise—linear function given by (4), the speed vs
period characteristic L(c) of the periodic travelliﬂg wave solu-
tion (¢(z;c), Y(z;c)) may be similar to the ones shown in Fig.l
and in Fig.2, and4hence Eg. (1) may have a slow %-periodic solu-
tion and a fast f%-periodic solution if & > Lmin' |

Rinzel and Keller [6] showed by numerical analysis that,
in the case f(u) is the piecewise-linear function, the slow
f-periodic solution is always'unstable. It is conjectured that
this statement holds even if f£(u) is not restricted to the
piecewise-linear function. |

In this paper, we prove a theorem which ascertains that a

periodic travelling wave solution (¢(z;c), Y(z;c)) is unstable
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if its spatial period L(c) satisfies L'(c) < 0. This theorem
justifies a part of the above conjecture, i.e. we can conclude
by the use of this theorem that the slow ¢-periodic solution is
unstable if the function L(c) is of the form shown in Fig.l, and
that, in the case L(c) is as shown in Fig.2, the slow %-periodic
solution is unstable if ¢ is limited in the range Ly > % > L.

in

where L, is as shown in Fig.2.

1

2., Preliminaries for Stability Analysis

We introduce the travelling coordinate system
z=x+ct, t=t,

in which Eqg. (1) takes the form

u =u,, - cu, - f(u) - w,
wt= - cwzl+ bt}.
The periodic travelling wave solution (u, w) = (¢(z;c), P(z;c))

is a stationary solution of this equation.

Since (3) is an autonomous system, we can replace the solution
(¢(z;¢c), Y(z;c)) by its translate (¢(z+h;c), Y(z+h;c)), where h
is an arbitrary real constant. Hence, in order to fix the solu-
tion (¢(z;c), V(z;c)), we need to "normalize the phase" by an

appropriate condition. We fix the phase by demanding that
$(0;c) = 0, ¢z(0;c) > 0.

Let us consider the linealized perturbation equation of the

above system with respect to this stationary solution, i.e.

= — - v - —
£ = Uypsz cuU, £'($(z;c))U - W,

= - cW_ + bU.
V4

> >



This equation has a solution of the form
(U(z,t), W(z,t)) = e (u(z;1), W(z;\),

where (U(z;A), W(z;X)) is a solution of the linear ordinary

differential equation

AU=Y, - cU, - f'(¢(z;c))U - W,

(5)
AW = - ch+ b U,

where A is a complex number. Assume that there exists a complex
ﬁumber A with Re{A} > 0 such that Eq.(5) has a non-trivial solu-
tion (U(z;A), W(z;A)) which is bounded for all z in (-, «).
In this>case, the perturbation equation has a solution which
grows exponentially in the course of time even if the initial
disturbance is sufficiently small. Hence the travelling wave
solution (¢(z;c), ¥(z;c)) is unstable in this case.

Equation (5) can be rewritten as

d

&ZY*= A(z;\,c) v, (6)
where
U 0 1 0
v = UZ A(z;A,c) = [A+£f(d(z2;c)) c 1
W, b/c 0 -x/c) .

Let X(z;A,c) be a matrix defined by the matrix differential
equation é%)( = AX with the initial condition X(0;A,c) = E.
Since the coefficient matrix A(z;)\,c) is an L(c)-periodic func-
tion of z, it follows from Floquet's theory that Eqg.(5) has a
bounded non-trivial solution if and only if one of the eigen-

values of X(L(c);A,c) is of modulus 1. Hence the next lemma

_ holds.

Lemma 1. A periodic travelling wave solution (¢(z;c), ¥(z;c)) is
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unstable if, for some complex number A satisfying Ré{k} >0,

the matrix X(L(c);:;A,c) has an eigenvalue whose modulus is 1.

Let ¢(z;c) be an L(c)-periodic vector function of z defined
by

¢(z;c) = (p(z;5¢), q>z(z;C), w(z‘;C))].

where the ' denotes a‘transposition of a vector. The following
equality is obtained by differentiating (3) with respect to z.
S T _ _
(9,) 5, = €(9,), = £ (0)o, = v, =0,
- c(wz)z-+ b, = 0. | (7)
This implies that the wvector function ’Z(z;c), which is an

L(c)-periodic function of z, satisfies the equation-

d

3z ¢, (zic) = A(z;0,c) ¢Z(z;c).
 Hence the following equalities hold in the case of X = 0.
$,(05¢) = ¢,(L(c);c) = X(L(c);0,c) ¢,(0;0). (8)

Let ui(x,c) and pi(k,c), i= 1,2;3, denote the eigenvalues
and the corresponding eigenvectors of the matrix X(L(c);x,c),
respectively. By virtue of (8), we may assume without losing

generality that
uj(0,0) =1, py(0,c) = ¢,(0;5¢). (9)

The following edquality is obtained by the use of Jacobi's

“formula.

det{X(z;A,c)}

z
det{X(0;x,c)} exp[! tr A(z;A,c) dz]
0

exp{(c - A/c)z}.
Hence, in the case of A = 0, we obtain

, ul(O,c)uz(O,c)u3(0,c) = exp{cL(c)}.

7
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gince ¢ > 0, L(c) > 0 and ul(O,c) = 1, it follows that

UZ(OIC)U3,(OIC) > 1.

3, Stability of Periodic Travelling Wave Solutions

The following theorem is a main result of this paper.

Theorem. ‘A periodic travelling wave solution (¢(z;c), Y(z;c)) is

unstable if its spatial period L(c) satisfies L'(c) < 0.

This theorem is obtained as a result of two lemmas which are

formulated below. The first lemma is as follows.

Lemma 2.‘

2

a5 My (ArC) = - L'(c). ' (11)

A=0

Proof. Since ¢(z;c) is an L(c)-periodic function of z, it

satisfies the equality
¢ (L(c);c) = ¢(0;c).

By differentiating this equality with respect tovc, we obtain
$,(L(c);c)L' (c) + ¢ (L(c)ic) = ¢,(0;c). (12)

Let (U, W) = (U(z;A,c), W(z;A,c)) be a solution of Eq. (5)

subject to the initial condition

v(0;),c) = ¢Z(0;C) + X¢C(O;C), ' (13)
where

v(z;i,c) = (U(z;r,c), U, (z;),c), W(zjh,0)) .
Since (U, W) = (¢z(z;c), wz(i;c)) is a non—frivial solution of

Eq.(5) in the case of A = 0, it follows from (13) that

v(z;0,c) = ¢ (z;c). (14)
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Let us limit the range of the variable z in the finite
interval [0, L(c)]. We can define the partial derivativesv
(ﬁfiz;k,C), WA(Z:A,C)) and (¢_(2z;¢), ¢ (z;c)) for all z in
[0, L(c)]. The following equalities are obtained by substituting
(U, W) = (U(z;Ar,c), W(z;A,c)) in (5), then differentiating (5)

with respect to ), setting A = 0 and using (14).

¢z(z;0)'

I

’{EA(Z;O,C)}ZZ.- C{ﬁx(z;O.C)}z - f'(¢(z;C))ﬁA(z;Q,C)

- W)\(Z;Orc)r

v, (z:0) (15)

- C{W}\(z;o,c)}z + bﬁ}\(z;o,c).

On the other hand, the following equalities are obtained by

. differentiating (3) with respect to c.

¢z(z;C)

{cbc(z;C)}ZZ - C{¢C(Z;C)}Z - £'(¢(z;¢)) ¢ (z5c) - wc(Z;C),

wz(z;C)

I

- d{wc(z;c)}z + 1)¢c(z;c).

The initial condition (12) yields that
GA(O;O,C) = ¢c(0;c).

Hence it follows from (15) and (16) that
v, (z;0,c) = ¢_(z;c), 0 <z < L(c).

Thus the following equality holds aslk + 0.

v(z;A,c) = ¢, (z;c) + A (z;c) + ox?), (17)

0 <z

A

L(c).

Taking into account of (17) and the equality

7
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X(z3AsC) v(0;A,c) = v (z;\,c), we obtain
X(L(c);A,c)'{¢Z(O;C) +2¢,(0;0) )
= §,(L(e);c) + Ag (L(c)se) + 0r%).

Hence, by virtue of (8) and (12), the following equality holds

as A - 0.
X(L(c)12,c) {,(05¢) + Ag_(0;¢))
= {1 - AL'(c)} {4, (050) + Ad_(0:;0)} + 0(2%).

This equality, together with (8), implies that

9
3x P1

(A, c) = ¢ (0;c)
lx=o ¢

and

A.C)
A=

oy - L' ().

Q.E.D. .

Next let us consider the eigenvalue ui(k,c), i=11,2,3,
of the matrix X(L(c);A,c) in the case where X is a sufficiently

large positive number.

Lemma 3. If A is a sufficiently large positive number, two

eigenvalues of X(L(c);A,c) have module < 1 and one has modulus > 1.

Proof. The coefficient matrix A(z;A,c) of Eg.(6) can be written as
A(z;A,c) = C(A,c) + D(z;c),
where

0 1 0 0 0 0

C(A,c) = A c 1 D(z;c) £'(¢(z;c)) O 0

b/c 0 -X/cj, 0 0 0

Let vi(A,c) and ri(k,c), i=1,2,3, denote the eigenvalues and

/0
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the corresponding eigenvectors of the matrix C()\,c), respectively.

It is easily shown that vi(A,c) satisfy

\)l(>\lc) - }\/C + 0(1)I

vo(a,€) = = /X +0(1), vy(he) = /x +0(1) (18a)

as A - + », and that ri(x,c) are given by

2 v
ri()\lc) = ( 1, \)il \)i - c\)i - A) . (18b)

Let R(),c) be a non-singular matrix defined by

R(x,c)

in

[‘rl(klc)l Iz()\rc)l 13(}\,0) 1,
and Y(z;\A,c) be a matrix defined by
Y(z;}\lc) E‘{R(Alc) }-l X(Z;}\lc) R(A,C).

Clearly the eigenvalues of Y(L(c);A,c) are given by ui(l,c). It
follows that Y(z;)A,c) satisfies the differential equation

é% Y(z;k,c) ='{R(>\,c)}-'l A(z;A,c) R(A,c) Y(z;A,c)

{A(A,c) + D(z;r,c)} Y(z;A,c),

where A(A,c) and B(Z;A,C)bare matrices given by

vl(A,c) 0 0
A(X,c) = 0 vz(k,c) 0
0 0 \)3(>\rc) ’

B(z;h,c) = {R(A,0)}" ! D(z;0) R(2,0Q).

It is easily verified by the use of (18a,b) that all the
elements of D(z;A,c) vanish as A » +®. Hence the eigenvalues

of Y(L(c);A,c) de not deviate largely from
exp{v, (A\,c)L(c)}, i=1, 2, 3,

as A > +o, Thus it follows from (18a) that two eigenvalues of

X{(L(c):;A,c) have module < 1 and one has modulus > 1.
Q.E.D.

/M



Let us complete the procof of Theorem.

proof of Theorem. Assume that L'(c) < 0. In this case, it

follows from (9) and (11) that the eigenvalue ul(k,c) of

X(L(c):A,c) satisfies
ul(k,c) > 1

if ) is a sufficiently small positive number. Moreover it

follows from (10) that
qu(k,c)l >1 or |u3(k,c)l > 1

when [A| is sufficiently small. Hence, at least two eigenvalues of
X(L(c);X,c) have module > 1 when X is a sufficiently small
positive number. On the other hand, Lemma 3 claims that two
eigenvalues of X(L(c);A,c) have module < 1 as X > += . Hence

it follows that one of the eigenvalues must have modulus = 1

for some A > 0. Therefore, according to Lemma 1, the travelling

wave solution (¢(z;c), Y(z;c)) is unstable in this case.
Q.E.D.
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