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Abstract.

tet (O, G, o), B, H,B) be Wi-systems, Fo (G304 and Fo(H;8y,
their Fourier algebras defined in [2]. The main result is that Fa(G;.?Q
and FB(H,’B_IZ are isometrically isomorphic as Banach algebras if and
only if either G and H are topologically isomorphic (denoted by I) as
groups and 0C and B are isomorphic (denoted by 6) such that
BI(g)° 8 = efug for all g € G, or G and H are topologically anti-isomorphic

and @ and (B are anti-isomorphic such that B

06 = fea_ for all
() & :

g e G.



1. Introduction.

For locally compact abelian groups G, H, Pontryagin's duality
theorem mentions that Ll(G) and Ll(H) are isometrically isomorphic if
and only if G and H are topologically lsomorphic as groups. T. Kawada
[47 and J.G. Wendel [11] proved the above statement for arbitary locally
compact groups.

G is a locally compact abelian group, then Ll(G) is isometrically
isomorphic to Fourier algebra A(G) in [7]. Therefore A(G) and A(H) are
isometrically isomorphic as Banach algebras if and only if G and H are
topologically isomorphic as abellan groups.

P. Eymard [1], on the other hand, defined the Fourier algebra
A(G) of a locally compact group G and showed that A(G) is isometrically
isomorphic to the predual m(G), of the von Neumann algebra m(G) generated
by the left regular representation of G.

So that, M.E.Walter [10] showed that A(G) and A(H) are isometrically
isomorphic as Banach algebras if and only if G and H are topologically
isomorphic as groups for arbitary locally compact groups.

Recently for W¥-system (&, G, a), the Fourier space Fa(G;Jf*)(:
Cy(G: ) was defined in [8] H. Takal such that F (G;6¢,) 1s isometrically
isomorphic to the predual of the crossed product G 8%9[ as Banach spaces.

M. Fugita [2] quite recently defined the Banach algebra structure
in Fourier space Fa(G;ét;) and all characters f;?a:52;3 is topologically
isomorphic to G as groups ahd defined and investigated the support of
the operators iﬁ G Gb?(.

In this paper we generalize a Walter's result for W¥-system (0C, G, a)
and show that the Banach algebra structure in Fa(G;DZ;) is essentiél
in a sence. |
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2. Notations and Preliminaries.

Let&t be a von Neumarn algebra on a Hilbert space )(_ and G be a
locally compact group. The triple (0, G, o) is said a W*—system if
the mapping o of G into the group Aut({7) of all automorphisms of JC is
a homomorphism and the function g+ moag(x) is continuous on G for all
xe ( and w e 4 (04 is the predual of £C).

G ®a§( is the von Neumann algebra generated by the family of the

operators {na(x), Aole) s xe@(, gt ;

il

(n (x)E)(h) = o (x)g(h)

(g(®)E) () = £(e )

for £ & L2(G;}{)-

Each element w of the predual (G ®a0Z)* of G \Xsaaf may be regarded

as an element u of Cb(G,ﬁ(,*) ;
u [gl(x) = < (x)r(g), w>

for all x €07, g < G where Cb(G;ﬁ[*) is the space of all bounded continuous

functions. And the new norm || || on F_(G;9%) is defineq ;

Hu b= 1wl

such that ||ul|l_ < |[[ul]] for all ue F (G; PTy) where
F G500 = (v, 506G O, C ;80 .

We define the product on Fa(G; O) by
(ux V)[gl(x) = ulg)(x)v(g) (1)

torallu, v eF (G;00), x€d(, g €G. Then F (G; 04) became a Banach
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algebra ([2] Theorem 3.5). So that we can define the product with an

operator T in G ®a(9C and an element u in FQ(G ;9(*) 5

1

<ul, v>=<T, vs%u>

<Tu, vo>=<T, u*%v>

for all v € F_(G;04) ((3.7), (3.9) in [2]).
Ilet T be an operator in G®ﬂ. Then the support supp(T) of T is
the set of all g & G satisfying the condition that >‘6<8> belongs to

the o-weak closure of TFa(G;ﬂC*) [See [2] Proposition 4.17.

*

Theorem. let ((C, G, a), (@, H, B) be W -systems and Fa(G;B(.*),
FB(H;ﬁ*) their Fourier algebras. ILet ¢ be an isometric isomorphism
of Fa(G;ﬁQ) onto FB(H;B*) as Banach algebras.

Then we get five elements (k, p, 9, I, ) with the following properties;

(1) k is an element of G such that '>\G(k) = t¢>(>\H(e)), where t¢
is the transposed map of ¢, e is the identity of H,
(2) I is either an isomorphism or anti-isemorphism of H onto G
as locally compact groups,
(3) p(resp. q) is a projection of’ 3%{\(9[,G (r‘esp.jﬁf\ﬁH),
(W) o6 is a isometric linear map of CB onto Msueﬁ that,
0 is an isomorphism of B q onto ﬁ[p,

8 is an anti-isomophism of 3 1-q onto %l—p s

(5) ¢ nl(y) = (WI(h)I(e(y)p) + (ku)[I(h)](aI(h)(e(y))(l—P))

for allyeB, h €H and u eFu(G;ﬁ'C*), where (ku)[g](y) = u[kg](ak(y)),

(6) 06, (1)] = Loy, 0 1p + [ (1 © 0 I(1-p

for all ye®B , h &H.



' *
Corollary. lLet (fC, G, o), (B, H, B) be W -systems, the two
. G ‘
actions o and B8 are ergodic on thelr centers (le.j’tnﬁt T = 54;5”6 Hog):

The following statements are equivalent ;
(1) Fa(G;%*) v I‘S(H;‘B*) in the sense of Banach algebras,

(ii) there exist elthor on fsomorphism T of H onto G, an
isomorphism 6 of }3 onto #C such that 68, = al(h)ve for all h eH, or an
anti-isomorphism I of H onto G, an anti-isomorphism 6 of(B onto 9 such

that BOBh =o 00 forallh eH.
Ih )

[The proof of Theorem]. The transposed map t¢ of ¢ 1s an isometric

linear map of H®BO:'5 onto G ®al9C . Using [3] Theorem 7, 10, we get ;
t t

o= "o (e lyp + vy)

where Yy is an isomorphism of (H QgBB)z': onto (G ®aﬂl)z, I\ is an anti-

o . oy s

isomorphism of (H®B®)(1—Z') onto <G®&9{‘)(1—z)’ z(resp. z') is a

central projection of G®a§{ (resp. H ®BB).

For all u, v & FQ(G;I%*), h €H,we obtain ;

1
A

<‘t¢()\H(h)), U v o> AH(h), o(u * v) >

"
COA

AH(h), o(w) % o(v) >

it
A

AH(h) @ AH(h), o(u) @ o(v) >

1
A

By, u s <o), v s

Therefore tgu(AH(}’l)) is a character of P‘Q(G;ﬁf*) for all h &H, which

.. t , ; .
implies q)(AH(h)) = AG'\G) since the character space Fa(G; %) 1s isomorphic

to G ([2] theorem 3.14).

.
We denote “q)(AH(o)) by Ay (k).
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By the quite same arguement in [10] Theorem 2 we get that
_t -1t, _
v = To(agle)) $ =yt

*
is C —isomorphism in Kadison's sense [3] and y()\H(hl)AH(hg)) is either
y()\H(hl)) y(AH(hg)) or y(AH(h2) y(AH(hl)), moreover we put
y(kH(h)) = AG(I(h)), so that I is either an isomorphism or an anti-
isomorphism of H onto G as locally compact groups.

The tfansposed map ¢ of y is also an isometric isomorphism of

Fa(G;ﬁt*) onto FB(H;B*). Then we get ;

< Y(WB(y)), usv>=c< vB(y), p(u % v) >

< ﬂB(y), Y(u) * y(v) >

< nB(y)®l, y(u) @Y (v) >

< Y(ﬂs(y))@)l, u@®v >

for all ye®B , u,v &€ F_(G; 0G).
By [5] proposition 2.3, we obtain y(vB(y)) is an element of wa(ﬁi),
so that we can define a isometric surjective linear map 6 of B onto oL

-1
by 6 = Tl'a P 'YvTTB.

Since y 1s a Jordon isomorphism,
y(Ty(z") + Y(Z‘)Y(T‘) = y([T, z']) = 2y(T z")
for all T € HQQéB , therefore we get v(T z') = y(T)z.
Hence y(ns(x vz = Y("B(X)) y(nﬁ(y))z

for all X,y ¢ B,

Since z 1s a central projection of G® 0?(, z 1s also an projection
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of na(ﬂf)‘, so that y(nB(x y))p = y(nB(x))Y(nB(y))p for all x,y € R
where p is the central support of z in the von Neumann algebra na(ﬁt) ',
We denote by q the central support of z' in the von Neumann
algebra nS(B)', then v(g)z = y(g z') = y(2') = z, inplies that
v(q)p = p, similarly we also obtain y_l(p)q = g so that y(q) =
Y ) = (e y(@p = p vl@)p = p.

Hence 6 i; an isomorphism ofE)q onto ‘%p’ moreover by the quite

same arguement, 6 is an anti-isomorphism of Bl-—q onto &€ 1-p*

since 7 (60" = 2q(8) n (0" Ay(8) » M@za(e) =z for all g &G,
we can prove easily that p is a G-invariant projection of ¢r , similariy
q is a H~invariant projection of &3 .

Now we have already proved (1)~ (4) and the statements (5) and (6)
still remain.

or all ye® , h €, we get

(ny» 008, (1)2 = yOy(0)m (7)) 2")

g T(0)3m 0 (T ™z
=, AT (p) 8(¥)z.

Hence we pet 6 o By, = N 6 on ag)q , and similarly

8B = a _1° 6 onO:ﬁl_q for all h &H.

b

Therefore we get ;

Bo = © + < -
B, (¥) T (h) 6(y)p uI(h)“l 6(y)(1-p)
for all y €13 and h & .

To prove the statement (5), we shall show first ;
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supp Y(ng(y)AH(h)) = {I(h)} .

For u € FQ(G;af*), since (y(ﬂB(y) AH(h)))u = Y(ﬂs(y) XH(h)w(u)) and
y is surjective, we get ;

—0-W

[y(mg(v) 2y(h)) F (G5 8C)]

/ — 0-W
= vlny(y) ay(0) P81,

— W
therefore [nB(y) AH(h) FB(H;GS*)] (“\AH(H) = AH(h) because of

SUpp nB(y)AH(h) = {h} , so that we obtain ;

—~0=W )
[Y(W‘B(y) Ay (R) )Fa(G;K*)] A G0 = CaIh)

that is supp Y("B(y) AH<h)) = {I(h)} .

By [2] Theorem 4.4 or [6] Proposition 6.1, there exists an element x

of (. such that y(n,(y) Ay(n) = 7 (1) A(T(h)),
On the other hand, na(x) AG(I(h))z

= y(r, (1) A(a))z

li

Y(m, (1) YOy(n)z

m, (8(y)) AG(I(h))z

therefore, we get x p = 6(y)p,similarly we obtain x(1-p) = o (1) ® 6(y)(1-p),

hence x = 8(y)p + () ® 8(y)(1-p),
y(m, (y) AH(h)) = ﬂa(e(y)p) XG(I(h)) + ﬂa(al(h)° e(y)(l—p))AG(I(h)) .

By the definition of Fourier algebras, the above equation and ¢(u) = w(ku)

for all u € FG(G;dT*), we can get the statement (5) easily.

-9 -



[Proof’ of Cor.] Suppose ¢ is an isometric isomophism of FQ(G;ék*)
onto FB(H;&5*) and we use the same notations in the proof of ﬁhe Theorem.
The projection p in the Theorem must be zero or 1‘by the conditions in
the corollary, therefore 6 must be either an isomorphism or an anti-
isomorphism of & onto #C.

When G is a locally compact abelian group, (which implies that H
is also a locally compact abelian group), I can be regarded as both
an isomorphism and an anti-isocmorphism as we like, therefore the Theorem
says that 6 is either an isomorphism Qflg onto #{ such that I is am

isomorphism of h onto G and « °© 6 = 608 for all h €H, or an anti-

I(h)
isomorphism of B onto 8C such that I is anti-isomorphic and o

O
eash for all h € H. Hence we may assume that G is non-abelian. . When

I is an antiQisomorphism of H onto G, the projection(l-z) appearing

in thekproof of the Theorem must be non-zero. For, if the projection

7z is an identity operator in(}Q%;( then vy is an isomorphism ofIi@%&B
onto GQbaﬁi, so that the arguement in the construction of the anti-
isomorphism I tell us that I is isomorphic [See [10] Theorem 2]. Then

I is both anti-isomorphic and isomorphic, which implies that G is an
abelian group, which is a contradition. Then we have gotten the projection
(1-z) is non-zero. Instead of considering the central support p of z in the
proof of the Theorem, we may take the central support of (1-z) in the

1 .
von Neumann algebra nd(&ﬁ, hence 6 must be anti-isomorphic such that

a 1. %0 = 008 for all h eH. If I is an isomorphism of H onto G, we
I )

similarly get the conclusion that 6 is isomorphic such that a 06 = BoB

I(h) h
for all h € H.
Conversely, suppose 1 is an isomorphism of H onto G such that

0B, = ar(y© By for all h € H. [9] proposition 3.4 says that there exists
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an isomorphism y of H ®BB onto G ® ( such that y(nB(y)) =7 _(6(y))
for all yeB , v( Ay(n)) = 1,(I(h)) for all h &H.

Then the t}r'ansposed map ¢ of y is an isometric isomorphism of
Fa(G;Q[*) onto FS(H;B*).

Suppose I is an anti-isomorphism of H onto G such that eosh= a )

-1.°
I(h™™)
for all h € H. By considering the opposite von Neumarn algebra
0(_0 of §(, the isomorphism J of H onto G by J(h) = I(h‘l) for all h € H,
eimilarly above, there exists an isomorphism y of H®BZB onto
G @aazo such that y(wﬁ(y)) = na(e(y)) for all ye(B, y(xH(h)) = AG(J h)
for all h € . On the other hand G 090‘8(0 is isororphic to G ® AL as
Banach spaces, therefore there exists an isometric linear map y of
H ®8@ onto G ®a9[ with the above properties. Then it is quite clear that
the transposed map ¢ of y 1s an isometric isomorphism of F (G;b‘f*) onto
FB(H;(B*).

Remark 1. This theorem is a kind of the generalization of [10]
Theorem 2 .

Remark 2. let (07, G, «), (&, G, B) be W*—systems. Then the
algebraic tensor procuct A(G)® Oy with the Fourier algebra A(G) of G and the
predual @C, of OC is naturally imbeded in both the Fourier algebras F (G 3 00,)
FB(G;&(*), moreover A(G)OO, is dense in these, therefore if the
identity map i of A(G)OQ Oy C T (G;8T) onto A(G)OOC, C Fy (G J,) can
be extended isometrically from Fa(G; 0C,) onto FB(G;ﬁ(*), the two actions
a, B are quite same in a sence. The algebric structure of Fa(G;ﬁ[*)
determines the group structure of G and the norm in Fa(G;f?[*) C CO(Ggﬁ(*)
which is quite different from the sup-norm in Cb(G ;0(;) determines the

action a of G.
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