UNBOUNDED DERIVATIONS IN COMMUTATIVE C*-ALGEBRAS

Shôichirô Sakai

§1. Closed *-derivations in a commutative C*-algebra and Silov algebras.

Let $\mathcal{O} = C(K)$ be the C*-algebra of all complex valued continuous functions on a compact Hausdorff space K. A linear mapping δ in $\mathcal{O} I$ is said to be a derivation in $\mathcal{O} I$ if it satisfies the following conditions:

- (1) $\mathcal{J}(\delta)$ is a subalgebra of ∂Z and separates the points of K, where $\mathcal{J}(\delta)$ is the domain of δ .
 - (2) δ (ab) = δ (a) b + a δ (b) (a, b \in Δ (δ)).

the matrix of 2×2 over $\partial \gamma$. Then $\mathcal{L}(\delta)$ is a normed algebra with $|||\cdot|||_{\delta}$, for a $\rightarrow \begin{pmatrix} a & \delta(a) \\ 0 & a \end{pmatrix}$ is an isomorphism.

1.1. Proposition. Let δ be a derivation in Ω and suppose that $\mathcal{O}(\delta)$ is a Banach algebra under some norm $\|\cdot\|_{L_{p}}$ then $\|\|\mathbf{a}\|\|_{\delta} \leq k\|\mathbf{a}\|_{L}$ (a $\in \mathcal{O}(\delta)$), where k is a fixed positive number.

Proof. By Johnson's theorem (Theorem 3 in [2]) there is a finite family of mutually orthogonal idempotents e_0, e_1, \ldots, e_n in $\mathcal{O}(\delta)$ such that for $p \in \mathsf{the}$ support of e_0 ,

to a x-derivation in a non-commutative Ct algebra.

a \rightarrow δ (a)(p) (a \leftarrow $\mathcal{D}(\delta)$) is continuous with respect to $\|\cdot\|_1$ and $\mathcal{D}(\delta)$ e_i (i = 1,2,...,n) has a unique maximal proper ideal and $\sum_{i=0}^{\infty} e_i = 1$. Since $\mathcal{D}(\delta)$ e_i (i = 1,2,...,n) is semi-simple, it is one-dimensional and so the support of e_i (i = 1,2,...,n) consists of one point p_i .

Then $\delta(a)(p_i) = \delta(a)(p_i)e_i(p_i) = \delta(ae_i)(p_i) = 0$ $(a \in \mathcal{D}(\delta))$; hence $a \to \delta(a)(p) = f_p(a)$ is continuous with respect to $\|\cdot\|_1$ for each $p \in K$. Since $\{f_p | p \in K\}$ is compact in $\mathcal{D}(\delta)^*$, where $\mathcal{D}(\delta)^*$ is the dual of $\mathcal{D}(\delta)$ with respect to $\|\cdot\|_1$, $\sup_{p \in K} \|f_p\| < +\infty$.

Since $a \to a(p)$ ($a \in \mathcal{D}(\delta)$) is a character of the Banach algebra $\mathcal{D}(\delta)$ for each $p \in K$, $\|a\| \le \|a\|_1$ for $a \in \mathcal{D}(\delta)$. Hence $\|\|a\|\|_{\delta} = \sup_{p \in K} \|\binom{a(p) - \delta(a)(p)}{0 - a(p)}\|\| \le k\|a\|_1$ ($a \in \mathcal{D}(\delta)$). This completes the proof.

A derivation δ in ∂Z is said to be a *-derivation if it satisfies:

- (1) $\mathcal{D}(\delta)$ is a dense *-subalgebra of \mathcal{O} ,
- (2) $\delta(ab) = \delta(a)b + a\delta(b)$ $(a,b \in \Delta)(\delta)$.
- (3) $\delta(a^*) = \delta(a)^*$ ($a \in \mathcal{N}(\delta)$).
- 1.2. Definition. A commutative Banach algebra A consisting of some of the continuous functions on a compact Hausdorff space X under a norm possibly larger than the sup norm is said to be a Silov algebra if for any point

p of X and disjoint closed set S, A contains a function vanishing at S and not vanishing at p.

Let $\partial Z = C(K)$ and let δ be a closed *-derivation in ∂Z ; then $\mathcal{D}(\delta)$ is a Banach *-algebra under the norm $\|\| \boldsymbol{\beta} \|_{\delta} = \|\| \boldsymbol{\alpha} \|_{\delta} = \| \boldsymbol{\alpha} \|_{\delta} \quad (\boldsymbol{\alpha} \in \mathcal{D}(\delta)).$

1.3. Proposition. Let $\{\delta_{\alpha} \mid \alpha \in \Pi\}$ be a family of closed *-derivations in \mathcal{O} and let $\mathcal{D} = \bigcap_{\alpha \in \Pi} \mathcal{D}(\delta_{\alpha})$. For a $\in \mathcal{D}$, define $|||\mathbf{a}||| = \sup_{\alpha \in \Pi} |||\mathbf{a}||| \delta_{\alpha}$ and let $\mathcal{D}_{0} = \{\mathbf{a} \mid |||\mathbf{a}||| < +\infty, \mathbf{a} \in \mathcal{D}\}$. Then \mathcal{D}_{0} is a Banach *-algebra. Proof. Let $\{\mathbf{a}_{\mathbf{n}}\}$ be a Cauchy sequence in \mathcal{D}_{0} under $|||\cdot|||$; then it is Cauchy under $|||\cdot|||\delta_{\alpha}$ so that there is an element \mathbf{b}_{α} such that $||\mathbf{a}_{\mathbf{n}} - \mathbf{b}_{\alpha}|| \to 0$ and $||\delta_{\alpha}(\mathbf{a}_{\mathbf{n}}) - \delta_{\alpha}(\mathbf{b}_{\alpha})|| \to 0$. Therefore $\mathbf{b}_{\alpha} = \mathbf{b}_{\beta} = \mathbf{b}$ for $\alpha, \beta \in \Pi$ and $\mathbf{b} \in \mathcal{D}(\delta_{\alpha})$ for each $\alpha \in \Pi$. For $\mathbf{f} \in \mathbf{b}_{0}$, there is a positive number $\mathbf{n}(\mathbf{f})$ such that $|||\mathbf{a}_{\mathbf{m}} - \mathbf{a}_{\mathbf{n}}|| = \sup_{\alpha \in \Pi} |||\mathbf{a}_{\mathbf{m}} - \mathbf{a}_{\mathbf{n}}|| \delta_{\alpha} < \mathbf{f}$ for $\mathbf{m}, \mathbf{n} \geq \mathbf{n}(\mathbf{f})$. Hence $|||\mathbf{a}_{\mathbf{m}} - \mathbf{a}_{\mathbf{n}}|| \delta_{\alpha} < \mathbf{f}$ for $\mathbf{m}, \mathbf{n} \geq \mathbf{n}(\mathbf{f})$ and $\alpha \in \Pi$, and so $\sup_{\alpha \in \Pi} |||\mathbf{a}_{\mathbf{m}} - \mathbf{b}||| \delta_{\alpha} = |||\mathbf{a}_{\mathbf{m}} - \mathbf{b}||| \leq \mathbf{f}$ for $\mathbf{n} \geq \mathbf{n}(\mathbf{f})$. This implies $\alpha \in \Pi$. This implies $\alpha \in \Pi$ and $\mathbf{a}_{\mathbf{m}} \to \mathbf{b}$ in $\mathcal{D}_{\mathbf{n}}$ and completes the proof.

1.4. Proposition. Suppose that \mathcal{Q}_0 is dense in \mathcal{M} ; then \mathcal{Q}_0 is a Silov algebra.

Proof. Let p_0 be a point of K and let S be a closed set in K such that $p_0 \notin S$. Take a positive element h in ∂Z such that $h(p_0) = 1$ and h(p) = 0 for $p \in S$.

For $0 < \epsilon < 1/3$ let $k \ge 0$ with $||h-k|| < \epsilon$ and $k \in \mathcal{D}_0$; then $0 \le k(p) \le 1/3$ for $p \in S$ and $2/3 < k(p_0) < 4/3$. Let f be an infinitely differentiable function on the real line such that f(t) = 0 for $t \in [0,1/3]$ and f(t) > 1 for $t \in [\frac{2}{3},\frac{4}{3}]$; then $f(k) \in \mathcal{D}(\delta_{\alpha})$ (cf. §3) for each $\alpha \in \mathbb{I}$ and $f(k)(p_0) = f(k(p_0)) \neq 0$, f(k)(p) = f(k(p)) = 0 for $p \in S$. Moreover $\delta_{\alpha}(f(k)) = f'(k) \bullet \delta_{\alpha}(k)$ (cf. §3) and so $\sup |||f(k)||| \delta_{\alpha} \le ||f'(k)|| \sup |||k||| \delta_{\alpha} + ||f(k)|| < +\infty$. This $\alpha \in \mathbb{I}$ completes the proof.

Let δ be a *-derivation in $\mathcal N$ and suppose that for some positive integer n, $\mathcal D(\delta^n)$ is dense in $\mathcal N$; then $\mathcal D(\delta^n)$ is a dense *-subalgebra of $\mathcal N$. It is clear that $\mathcal D(\delta^m)\supset \mathcal D(\delta^n)$ ($m\leq n$). For a $\in \mathcal D(\delta^n)$, define

Then $\mathcal{J}(\delta^n)$ becomes a normed *-algebra under the norm

$$|||a|||_{\delta} n, \text{ for } a \rightarrow \begin{pmatrix} 0 & \delta(a) & \dots & \frac{\delta^{n}(a)}{n!} \\ 0 & a & \delta(a) & n! \\ 0 & 0 & a & \ddots & \vdots \\ 0 & 0 & \delta(a) \\ 0 & 0 & 0 & a \end{pmatrix} \text{ is an isomorphism.}$$

Suppose that δ is closed; then $\mathcal{D}(\delta^n)$ is a Banach *-algebra. Denote that $\Phi(a) = \begin{pmatrix} a & \delta(a) & \frac{\delta^2(a)}{2!} & \dots & \frac{\delta^n(a)}{n!} \\ 0 & a & \delta(a) & \dots & \frac{\delta^2(a)}{2!} & \dots & \frac{\delta^2(a)}{2!} \\ 0 & 0 & a & \dots & \dots & \frac{\delta^2(a)}{2!} \\ 0 & 0 & 0 & 0 & \delta(a) \\ 0 & 0 & 0 & 0 & \dots & a \end{pmatrix}$;

then $\Phi(f(a)) = f(\Phi(a))$ for $f \in C^{\infty}(R)$ (cf. []). - In particular $f(a) \in \mathcal{D}(\delta^n)$ if $a \in \mathcal{D}(\delta^n)$ and $f \in C^{\infty}(R)$.

1.5. Proposition. Let δ be a closed *-derivation in \mathcal{O} and suppose that $\mathcal{O}(\delta^n)$ is dense in \mathcal{O} for some positive integer n; then $\mathcal{O}(\delta^n)$ is a Silov algebra under the norm $\|\|\mathbf{e}\|\|_{\delta}$ n. The proof is similar with the proof of Proposition 1.4.

Let A be a Silov algebra on K. Call an ideal I primary if I is contained in exactly one maximal ideal. Given a maximal ideal M , consisting of all functions vanishing at $p(\in K)$, there exists a unique smallest closed primary ideal attached to M ; it is the closure of the set of all functions vanishing in a neighbourhood of p (the neighbourhood depending on the function). Let us write J(p) for this ideal.

1.6. Proposition. Under the assumptions of Proposition $1.4, \text{ consider the Silov algebra } \mathcal{O}_0 \text{ ; then } J(p) \subseteq \{a|a(p)=\delta(a)(p)=0 \text{ for } a\in\mathcal{O}_0 \text{ and all } \alpha\in\mathbb{N}\}.$

Proof. Let $I_{\alpha} = \{a \mid a(p) = \delta_{\alpha}(a) \mid (p) = 0, a \in \mathcal{D}_{0}\};$ then I_{α} is a closed set of \mathcal{D}_{0} . For $y \in \mathcal{D}_{0}$, $(ya) \mid (p) = 0 \text{ and } \delta_{\alpha}(ya) = \delta_{\alpha}(y) \mid (p) \mid a(p) + y \mid (p) \delta_{\alpha}(a) \mid (p) = 0;$ hence I_{α} is an ideal. Since $I_{\alpha} = \{a \mid \left(\begin{pmatrix} a(p) & \delta_{\alpha}(a) \mid (p) \\ 0 & a(p) \end{pmatrix} = 0,$ $a \in \mathcal{D}_{0}\}$ and $a \to \begin{pmatrix} a(p) & \delta_{\alpha}(a) \mid (p) \\ 0 & a(p) \end{pmatrix}$ is a homomorphism, $\mathcal{D}_{0}/I_{\alpha}$ is at most two-dimensional, a unit element together with an element of square 0. If $I_{\alpha} \subset M_{q}(p \neq q)$, then $I_{\alpha} \subset M_{p} \cap M_{q}$ and so $\mathcal{D}_{0}/I_{\alpha}$ is two-dimensional, semi-simple, a contradiction. Hence I_{α} is primary so that $J(p) \subset I_{\alpha}$ and so $J(p) \subset \Lambda$ $I_{\alpha} = I$. This completes the proof.

1.7. Proposition. Under the assumption of Proposition 1.5, consider the Silov algebra $\mathcal{D}(\delta^n)$; then $J(p) \subseteq \{a \mid a(p) = \delta(a)(p) = \ldots = \delta^n(a)(p) = 0, a \in \mathcal{D}(\delta^n)\}$.

The proof is similar with the proof of Proposition 1.6.

1.8. Definition. Let A be a Silov algebra on X. A is said to be of type C if the norm in A is equivalent to the sup, taken over x ($x \in X$) of norms in the quotient algebra A/J(x).

1.9. Proposition. Let δ be a closed *-derivation in 07; then the Silov algebra $\mathcal{L}(\delta)$ with the norm $||| \cdot |||_{\delta} \quad \text{is of type C.}$

Proof. $|||a|||_{\delta} = \sup_{p \in K} ||\binom{a(p) - \delta(p)}{0 - a(p)}||$ and $||\binom{a(p) - \delta(p)}{0 - a(p)}|||$ \leq the norm of a in the quotient algebra $\mathcal{D}(\delta)/J(p)$; hence $|||a|||_{\delta} \leq \sup_{p \in K} \{$ the norms of a in the quotient algebra $\mathcal{D}(\delta)/J(p) \} \leq |||a|||\delta$. This completes the proof.

1.10. Proposition. Let δ be a closed *-derivation in \mathcal{O} and suppose that $\mathcal{D}(\delta^n)$ is dense in \mathcal{O} for some positive integer n; then the Silov algebra $\mathcal{D}(\delta^n)$ with the norm $|\|\bullet\|\|_{\delta^n}$ is of type C.

The proof is similar with the proof of Proposition 1.9.

1.11. Proposition. Let $(\mathcal{T} = C(K))$ with a totally disconnected compact Hausdorff space K. Then every closed *-derivation δ in \mathcal{O} is identically zero so that $\mathcal{O}(\delta) = \mathcal{O}$.

Proof. Consider the Banach algebra $\mathcal{D}(\delta)$ with the norm $\|\|\cdot\|\|_{\delta}$. The space K of all maximal ideals of $\mathcal{D}(\delta)$ is (cf,g_3) totally disconnected, so that by Silov's theorem any idempotent in \mathcal{D} belongs to $\mathcal{D}(\delta)$. Suppose that e is an idempotent; then $\delta(e) = \delta(e^2) = e\delta(e) + \delta(e)e = 2\delta(e)e$ and so $\delta(e)e = \delta(e) = 0$. Let \mathcal{O}_0 be the set of all finite linear combinations of all idempotents in \mathcal{O} ; then $\delta(a) = 0$

for a $\in \mathcal{U}_0$ and $|||a|||_{\delta} = ||a||$ (a $\in \mathcal{U}_0$). Since \mathcal{O}_0 is dense in $\partial \mathcal{L}$, \mathcal{L} (δ) = $\partial \mathcal{L}$ and δ (x) = 0 (x $\in \partial \mathcal{L}$). This completes the proof.

Then can we conclude that C(K) has a non-trivial closed

derivation? (The answer is no. If K has a totally disconnected open dense subset, then C(K) has no non-trivial closed *-derivation.

Now let $\partial Z = C([0,1])$ with the unit interval [0,1] and $\delta_0 = \frac{d}{dx}$ with $\mathcal{D}(\delta_0) = C^{(1)}([0,1])$, where $C^{(1)}([0,1])$ is the algebra of all continuously differentiable functions on [0,1]. Then δ_0 is a closed *-derivation in ∂Z .

For $p \in [0,1]$, it is well known that $J(p) = \{a|a(p) = a'(p) = 0, a \in \mathcal{D}(\delta_0)\}$.

Hence $J(p) = \{a \mid {a(p) \choose 0} {a(p) \choose 0} = 0, a \in \mathcal{D}(\delta_0) \}$ and so $\mathcal{D}(\delta_0)/J(p)$ is a two-dimensional algebra, a unit element together with an element of square 0.

Now let δ_1 be another derivation in $\mathcal{M}=C([0,1])$ with $\Delta(\delta_1)=\Delta(\delta_0)$. Then by Proposition 1.1, $\begin{aligned} \|\mathbf{a}\|\|\delta_1&\leq \mathbf{k}\|\|\mathbf{a}\|\|\delta_0 & (\mathbf{a}\in\Delta(\delta_0)). \quad \text{Let} \\ \mathbf{I}_p&=\{\mathbf{a}\mid\begin{pmatrix}\mathbf{a}(\mathbf{p})&\delta_1(\mathbf{a})(\mathbf{p})\\0&\mathbf{a}(\mathbf{p})\end{pmatrix}=0, \ \mathbf{a}\in\Delta(\delta_0)\}\ ; \quad \text{then}\quad \mathbf{I}_p \quad \text{is} \\ \mathbf{a} \text{ closed primary ideal in } \mathcal{M}(\boldsymbol{\xi}). \quad \text{Since } \mathbf{I}_p\subset \mathbf{M}_p\ , \quad \mathbf{J}(\mathbf{p})\subset \mathbf{I}_p\ . \end{aligned}$ Hence

¹⁾ The following problem is interesting: Suppose that Clk) has a closed x-derivation.

Then can we conclude that K centains [0,1] topologically?

2) This remark is due to T.O.

$$|| \begin{pmatrix} a(p) & \delta_{1}(a)(p) \\ 0 & a(p) \end{pmatrix} || \leq k_{p} || \begin{pmatrix} a(p) & \delta_{0}(a)(p) \\ 0 & a(p) \end{pmatrix} ||$$

(a $\in \mathcal{D}$ (δ_1) and p \in [0,1]) where k_p is a positive number depending on p.

$$|| \begin{pmatrix} a(p) - a(p) & \delta_1(a)(p) \\ 0 & a(p) - a(p) \end{pmatrix} || \leq k_p || \begin{pmatrix} a(p) - a(p) & \delta_0(a) \\ 0 & a(p) - a(p) \end{pmatrix} ||$$

and so $|\delta_1(a)(p)| \leq k_p |\delta_0(a)(p)|$ (a $\in \mathcal{A}(\delta_0)$). Hence there is a number $\lambda(p)$ such that $\delta_1(a)(p) = \lambda(p)\delta_0(a)(p)$ (a $\in \mathcal{A}(\delta_0)$).

Put $a_0(p) = p$ ($p \in [0,1]$); then $\delta_0(a_0) = 1$ and so $\delta_1(a_0)(p) = \lambda(p)$. Therefore we have the following theorem.

1.12. Theorem. Let δ be a derivation in C([0,1]) such that $\bigwedge(\delta) = C^{(\perp)}([0,1])$; then there is a unique continuous function λ on [0,1] such that $\delta = \lambda \cdot \frac{d}{dx}$ on $C^{(\perp)}([0,1])$.

1.13. Theorem. Any derivation δ defined on $C^{(1)}([0,1])$ is closable.

Proof. By Theorem 1.12, $\delta = \lambda \frac{d}{dx}$. Suppose that $\|a_n\| \to 0$ and $\|\delta (a_n) - b\| \to 0$ with $b \in C([0,1])$. Let $0 = \{p | \lambda(p) | > \epsilon\}$ for $\epsilon > 0$ and let $p \in 0_{\epsilon}$. Since $C^{(\perp)}([0,1])$ is a Silov algebra, there

is an element c in $C^{(1)}([0.1])$ such that $c(p) \neq 0$ and c(q) = 0 for $q \in 0^c_\epsilon$. Then $a_n c^2 \to 0$ and $c(a_n c^2) = \delta(a_n)c^2 + a_n\delta(c^2) \to bc^2$. On the other hand, $c(a_n c^2)(r) = \lambda(r)\delta_0(a_n c^2)(r) = \lambda(r)\{\delta_0(a_n)(r)c^2(r) + a_n(r)(2c)(r)\delta_0(c)(r)\};$ hence $c(a_n c^2)(r) = 0$ implies $c(a_n c^2)(r) = 0$ and $c(a_n c^2)(r) = 0$ and $c(a_n c^2)(r) = 0$. Therefore $c(a_n c^2)(r) \to c(a_n c^2)(r) \to c(a_n c^2)(r)$. Therefore $c(a_n c^2)(r) \to c(a_n c^2)(r) \to c(a_n c^2)(r)$. Since $c(a_n c^2)(r) \to c(a_n c^2)(r) \to c(a_n c^2)(r)$ is a continuous function $c(a_n c^2)(r) \to c(a_n c^2)(r) \to c(a_n c^2)(r)$. Since $c(a_n c^2)(r) \to c(a_n c^2)(r) \to c(a_n c^2)(r)$ is a continuous function $c(a_n c^2)(r) \to c(a_n c^2)(r) \to c(a_n c^2)(r)$. Since $c(a_n c^2)(r) \to c(a_n c^2)(r) \to c(a_n c^2)(r)$. Since $c(a_n c^2)(r) \to c(a_n c^2)(r) \to c(a_n c^2)(r)$. Since $c(a_n c^2)(r) \to$

1.14. Theorem. Let δ be a derivation in C([0,1]) such that $\mathcal{D}(\delta) = C^{(n)}([0,1])$ for some positive integer n, where $C^{(n)}([0,1])$ is the algebra of all n-times continuously differentiable functions on [0,1]. Then there is a unique continuous function λ on [0,1] such that $\delta = \lambda \frac{d}{dx}$.

The proof is similar with the proof of Proposition 1.12.

1.15. Theorem. Any derivation defined on $C^{(n)}([0,1])$ for some positive integer n is closable.

Let $C^{(\infty)}([0,1]) = \bigcap_{n=1}^{\infty} C^{(n)}([0,1])$; then there is no norm on $C^{(\infty)}([0,1])$ under which $C^{(\infty)}([0,1])$ becomes a Banach algebra, for if there were such a norm, then $C^{(\infty)}([0,1])$

becomes a semi-simple Banach algebra so that $\delta_0 \equiv 0$, a contradiction

Problem 1.2. Is there a non-closable derivation on $C^{(\infty)}([0,1])$? (The answer is no any derivation of $C^{(\infty)}([0,1])$) into C([0,1]) is closable.))

Problem 1.3. Can we extend Theorem 1.13 to general cases? Namely let δ_0 be a closed *-derivation in a commutative C*-algebra $\partial \mathcal{I}$ and let δ be a derivation defined on $\mathcal{D}(\delta)$. Then can we conclude that δ is closable?

1.16. Proposition. Let δ be a closed *-derivation in C([0,1]) and suppose that $\mathcal{O}(\delta)$ contains a self-adjoint elemnet h such that the C*-algebra generated by h is C([0,1]).

Then there exists a *-automorphism ξ on C([0,1]) such that $\xi^{-1}C^{(1)}([0,1]) \subset \mathcal{D}(\delta)$ and $\xi \delta \xi^{-1}f = \lambda \frac{d}{dx}f$ ($f \in C^{(1)}([0,1])$) where λ is a continuous real valued function on [0,1].

Consider the mapping $f(\eta) \to f$ of C([0,1]) onto C([0,1]); then it is a *-isomorphism ξ of C([0,1]) onto

¹⁾ This remark is due to Johnson.

C([0,1]). Moreover under this isomorphism

$$\xi \delta(f(\eta)) = \xi \delta \xi^{-1} \xi f(\eta) = \xi \delta \xi^{-1} f = \lambda \cdot f'$$

for $f \in C^{(1)}([0,1])$. Hence $\xi \delta \xi^{-1} f = \lambda \cdot \frac{d}{dt} f$. This completes the proof.

Problem 1. 4. Can we conclude that a Silov algebra \mathcal{A} (δ) for a closed *-derivation in C([0,1]) has a single self-adjoint element h such that the C*-algebra generated by h is C([0,1])?

Now suppose that a closed derivation δ in C([0,1]) is an extension of $\frac{d}{dx}$ - i.e. $\delta = \frac{d}{dx}$ on $\mathcal{D}(\frac{d}{dx}) = C^{(1)}([0,1])$. Since $\frac{d}{dx}\mathcal{D}(\frac{d}{dx}) = C([0,1])$, for any $a \in \mathcal{D}(\delta)$, there is an element b in $\mathcal{D}(\frac{d}{dx})$ such that $\delta(b) = \delta(a)$ and so $\delta(a-b) = 0$. Let $\mathcal{L} = \{x | \delta(x) = 0, x \in \mathcal{D}(\delta)\}$; then \mathcal{L} is a subalgebra of $\mathcal{D}(\delta)$. Moreover, $|||x|||\delta = ||x||$; hence \mathcal{L} is a norm closed subalgebra of C([0,1]).

Moreover $\delta(\delta) = C^{(1)}([0,1]) + \delta$ and $C^{(1)}([0,1]) \cap \delta$ = $C^{(1)}$ and $\delta(\mathcal{L}) = 0$.

Problem 1.5. Is there a closed derivation δ in C([0,1]) such that $\bigwedge (\delta) \supseteq C^{(1)}([0,1])$ and $\delta = \frac{d}{dx}$ on $C^{(1)}([0,1])$?

Remark. R. Herman communicates to the author that there is a non-closable *-derivation δ_1 such that $\mathcal{N}(\delta_1)\supset C^{(1)}([0,1])$

and $\delta_1 = \frac{d}{dx}$ on $C^{(1)}([0,1])$.

1.17. Proposition. Let $\mathcal{O} = C(T)$, where T is a one-dimensional torus group and let δ be a closed erivation in $\mathcal{O} Z$ such that $\mathcal{O} = \delta \mathcal{O} = \delta$

Proof. $|||a^t|||_{\delta} = |||a|||_{\delta}$ (t \in T) for a $\in \mathcal{D}(\delta)$, where $(a^t)(s) = a(t+s). \text{ Hence the mapping } t \to a^t \text{ is continuous}$ on $\mathcal{D}(\delta)$ for each $a \in \mathcal{D}(\delta)$.

Put $a_n = \frac{1}{2\pi} \int_0^{2\pi} e^{-int} a^t dt$ ($a \in \mathcal{D}(\delta)$); then $a_n^s(x) = e^{ins} a_n(x)$. Hence $a_n(s+x) = e^{ins} a_n(x)$ and $a_n(s) = e^{ins} a_n(0)$ $a_n(0) = \frac{1}{2\pi} \int_0^{2\pi} e^{-int} a(t) dt.$

Since $\mathcal{O}(\delta)$ is dense in C(T), there is an element a in $\mathcal{O}(\delta)$ such that $a_n(0) \neq 0$; hence $e^{ins} \in \mathcal{O}(\delta)$ $(n=0,\pm 1,\pm 2,\ldots)$. $\tau_t \delta(e^{ins}) = \delta(e^{in(s+t)}) = e^{int} \delta(e^{ins})$. Put $\delta(e^{ins}) = f_n(s)$; then $f_n(t+s) = e^{int} f_n(s)$. Hence $f_n(t) = e^{int} f_n(0)$ and so $\delta(e^{ins}) = f_n(0) e^{ins}$. $\delta(e^{it}) = f_1(0) e^{it} = \frac{f_1(0)}{i}$ ie $it = \frac{f_1(0)}{i}$ $\frac{d}{dt}$ e it; hence $\delta(e^{int}) = \delta((e^{it})^n) = \frac{f_1(0)}{i}$ $\frac{d}{dt}$ e int $(n=0,\pm 1,\pm 2,\ldots)$. Let $g(t) \in C^{(\omega)}(T)$ and $g(t) = \sum_{n=-\infty}^{\infty} C_n e^{int}$; then $g'(t) = \sum_{n=-\infty}^{\infty} c_n ine^{int}$. Since $|c_n|^{n} = \sum_{n=-\infty}^{\infty} c_n e^{int}$ for each

positive integer p (note $g \in C^{(\infty)}(T)$), $g'(t) = \sum_{n=-\infty}^{\infty} c_n ine^{int}$ is absolute convergent; hence $\delta(g) = \frac{f_1(0)}{i} \frac{d}{dt}(g)$ for $g \in C^{\infty}(T)$, and $C^{(\infty)}(T) \subset \mathcal{O}(\delta)$.

By Silov's theorem (cf. [4]) $\mathcal{D}(\delta) = C^{(n)}(T)$ for some non-negative integer n. By Theorem 1.14, $\mathcal{D}(\delta) = C^{(1)}(T)$ or $\mathcal{D}(\delta) = \mathcal{O}(T)$. If $\mathcal{D}(\delta) = C^{(1)}(T)$, then $\delta(g) = \lambda g$ for $g \in C^{(1)}(T)$ and so $\lambda = \frac{f_1(0)}{i} = k$. If $\mathcal{D}(\delta) = C(T)$, then $\delta = 0$. This completes the proof.

Problem 1.6. Let $\partial Z = C_0(R)$, where $C_0(R)$ is the algebra of all continuous functions on the real line R vanishing at infinity and let δ be a closed *-derivation in $C_0(R)$ such that $\tau_g \delta = \delta \tau_g$ ($g \in R$). Then can we conclude that $\mathcal{D}(\delta) = C_0^{(1)}(R)$ and $\delta = k \cdot \frac{d}{dt}(k \neq 0$, a constant) or $\mathcal{D}(\delta) = C_0(R)$ and $\delta \equiv 0$?

REFERENCES

- 1. K. Deleeuw and H. Mirkill, Intrinsic algebras on the torus, rans. Amer. Math. Soc. 81 (1956), 320-330.
- 2. B. Johnson, Continuity of Derivations on commutative algebras, Amer. J. Math. 91 (1969), 1-10.
- I. Kaplansky, Some aspects of analysis and probability, functional analysis, New York, John Wiley & Sons, Inc.
- G. Silov, Homogeneous rings of functions algebras,
 Amer. Math. Soc. Translations no. 92.