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UNBOUNDED DERIVATIONS IN COMMUTATIVE C%-ALGEBHAS
Shéichird Sakai

§1. Closed *-~derivations in a commutative C*-algebra and

Silov algebras.

Let (JL = C(K) be the C*-algebra of all complex valued
continuous functions on a compact Hausdorff space K. A
linear mapping & in (1 is said to be a derivation in (7

if it satisfies the following conditions:

(1) _D(8) is a subalgebra of O and separates the

points of K, where () (§) is the domain of §.
(2) &(ab) = §(a)b + as(b) (a,b € .0O(s)).

Let & be a derivation in (L and define H!aillé'—‘

a §f({a) X y
;s{ )n (m, bef(s)), where (
0 a

the matrix of 2x2 over (fJ . Then ) (§) is a normed alge-
a d&(a)

) (x,v,2z, w& 01)is

\z w

bra with ||l ﬂﬂé , for a - ( ) is an isomorphism.

0 a

1.1. Proposition. Let § be a derivation in ¢ and sup-

Sitloy- 120 on K,
pose that A (6) is a Bamach algebra under some norm [+l
e et 12 2) A *
then fllallly sklilally (a €4(8)), where k 1is a fixed posi-

12
tive number.

Proof. By Johnson's theorem (Theorem 3 in [2]) there is a
finite family of mutually orthogonal idempotents egsey reerr®y

in L(8) such that for p € the support of Y.

N Long‘*” ,;v':,s P'fo“?fl L;’I{I?,}Qn:lf)ﬁag ‘t{’(ﬂ.l‘ f}p{:d }’Wf"’éiﬁ"’h Cair fro :(”X')lang]i’“tr
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/



33

a - §(a) (p) (a &(8)) 1is continuous with respect to

lleity and D(8) e,

i =1,2,...,n) has a unique maximal

(i
n .
Y e, =1. Since L(8)e, (i = 1,2,...,n)
i=e * i

is semi-simple, it is one-dimensional and so the support

proper ideal and

of ey (i =1,2,...,n) consists of one point <9

Then ¢(a) (p;) = d(a)(p;le;(p;) = 8(a e;)(p;) =0
(a €D(S)); hence a - §(a)(p) = fp(a) is continuous with
respect to |l»|l4 for each p € K. Since {fplp € K} is
compact in _D(8)*, where L(8)* is the dual of Q(§)

with respect to |lell , sup NE_ 1l < 4o,
DEK p

Since a - a(p) (a € L (8)) is a character of the
Banach algebra J/J (8) for each p € K, llall < llally for
a(p) d&(a) (p)\

a € 4(6). mence llalllg= sup Ii{ . IR CEVN

PEK a(p)

(a €D(8)). This completes the proof.

A derivation § in 07 is said to be a *-derivation

if it satisfies:

(1) L (s) is a dense *-subalgebra of (Z

(2) é&tab) = §(a)b + as(b) (a,b € L (8)) .

(3) §(a*) §(a)* (a € D(8)).

1.2. Definition. A commutative Banach algebra A consi-
sting of some of the continuous functions on a.compact
Hausdorff space X under a norm possibly larger than the

sup norm is said to be a Silov algebra if for any‘point‘
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)

p of X and disjoint closed set S, A contains a

-function vanishing at S and net wvanishing at ' p.

Let Jl= C(K) and let § Dbe a closed *-derivation
in JZ; then ) (8) is a Banach *-algebra under the norm

ltelll with HEa*iil o =lalllg (a & L(8)) .

1.3. Proposition. Let {6ala € N} be a family of closed

*-derivations in 0L and let ) = n AD(SQ). For a € ,
o €ll .
define |Jlalll= suplllalllda and let ., 4 = {allllalll <4, a €0 }.
a€ll .

Then ) 0 is a Banach " *-algebra.

Proof. Let {an} be a Cauchy sequence in AS 0 under
IItelll 3 then it is Cauchy under IH‘HIGQ so that there is an
element ba such that nan—balla 0 and ”6u(an)—6a(ba)“ - 0.
Therefore ba = bB =b for . a,8 €I and b € ¢O(Ga) for
each ¢ € II. For £ > 0, there is a positive number n(eg)
such that Mag-all = zgﬁlnam—anlnéa < ¢ for m,n > n(g).

Hence l“am-anlnda < ¢ for m,n > n(eg) and o € I, and so

suplnam-bIUGa=luam-b|u < € for n > n{(e). This implies
a€ll T -

1Iblll <+ and a - b in L o and completes the proof.

1.4. Proposition. Suppose that -()0‘ is dense in ({; then

0 is a Silov algebra.

Proof. Let p, be a point of K and let S be a closed
set in K such that Py € S. Take a positive element h

in (. such that h(pyg) =1 and h(p) = 0 for p € s.
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For 0 < e < 1/3 1let Xk > 0 with Jlh-kjl < ¢ and
k€D, i then 0 < k(p) 21/3 for pe€ s and
2/3 < k(po) < 4/3. Let f be an infinitely differentiable

function on the real line such that f(t) = 0 for

2
3

£(k) € D(6,) (cf. §3) for each o € I  and

t € [0,1/3] and £f(t) > 1 for t € [ ,%] ; then
£(k) (pg) = f(k(py)) + 0, £(k)(p) = £(k(p)) = 0 for p € S.
Moreover Sa(f(k)) = £'(k) e éa(k) (cf. §3) and so
supIHf(k)Iuéag e (k) Sup|Hk|H6a+ HE(k)Il < 4. This
o€l o
completes the proof.

Let & be a *-derivation in (2 and suppose that
for some positive integer n | N (™) is dense in 0T ;

then oﬂ(én) is a dense *-subalgebra of 1. It is clear

that D (6™ >0 (%) (m <n). For ac¢€ D (8™, define

2 n
a sta) ® éa) i, §-—r‘fi’—
Gz(a) Gn—1(a)

2Tt (men!

N 0 0 a 0 - - :
Mailis = Nl ) ; .
) 0 0 a - - )
L : : C&(a)
0 g (4] 6 - - & a

Then jD(én) becomes a normed *-algebra under the norm



n

0 s(a) ... 248

0 a ¢6(a)- - - . . .
Iualﬂﬁn, for a- 0 0 P is an isomorphism.

0 0 - §(a)

0 0 0 a

Suppose that ¢ 1is closed; then dD(én) is a Banach

. §2(a) 8N (a) .
*-algebra. Denote -.that o&(a) = a §(a) 2! " n! ’
0 a §(a) - - ,
' 0 a . e - - v‘
2
) §7(a)
;0 a-- -5
]
o o 0 §(a)
o 0 o o - -2

then o(f(a)) = f(o(a)) for f € C(R) (cf. [ 1). - In

particular f(a) € JO(én) if a € Jﬁ(dn) and f € C”(R).

1.5. Proposition. Let & be a closed *-derivation in 42

and suppose that .{)(Gn) is dense in (I for some positive
integer n; then J)(Sn) is a Silov algebra under the norm
IH,HlGD . The proof is similar with the proof of Proposition

1.4.

Let A Dbe a Silov algebra on K. Call an ideal 1
primary if I is contained in exactly one maximal ideal.
Given a maximal ideal MD , consisting of all functions
vanishing at p(€ K), there exists a unique smallest closed
primary ideal attached to Mp 7 it is the closure of the
set of all functions vanishing in a neighbourhood of p

(the neighbourhood depending on the function). Let us write

J(p) for this ideal.



1.6. Proposition. Under the assumptions of Proposition
1.4, consider the Silov algebra AD 0 i then J(p) c {ala(p)=
s(a)(p) = 0 for a €« and all o € 0}.

(6}

proof. Let I = {ala(p) = Sa(a) (p) =0, a 6000};
then I is a closed set of g - For yE “DO '

(ya) (p) = 0 and § (ya) = § (y)(plalp) + y(p)é§ (a)(p) = O;
hence I is an ideal. Since I, = {a!((aép) éa(zi(g)) =0,
¢ a(p) §_(a) (p | P
a € 430}"and a-e\ o a(p) ) is a homomorphism, XDO/Ia

is at most two-dimensional, a unit element together with an

element of square 0. If I « Mq(p # q), then I, < Mp nM

o q

and so °OO/Ia is two-dimenisonal, semi-simple, a contradic-
tion. Hence Ia is primary so that J(p) C,Ia and so
Jp) c n I = I. This completes the proof.

a€n
1.7. Proposition. Under the assumption of Proposition 1.5,
consider the Silov algebra Jd)(§"); then J(p) ¢ {ala(p) =

§(a)(p) = ... =6 a)(p) =0, aedM}.

The proof is similar with the proof of Proposition 1.6.

1.8. Definition. Let A be a Silov algebra on X. A is
said to be of type C if the norm in A 1is equivalent to
the sup, taken over x (x € X) of norms in the quotient

algebra A/J(x).



1.9. Proposition. Let § be a closed *-derivation in
f1; then the Silov algebra A(s8) with the norm

]”vﬂ|6 is of type C.

a(p) a(p)\ a(p) G(p)\
Proof. |Ha|H6= sup H( ' /II and H( /H
PEK 0 a(p) 0 a(p)
< the norm of a in the quotient algebra oJD(8§)/J(p) ;
hence |ljafll , <sup { ‘the norms of a in the quotient algebra
~ p€K

D(8)/T(p)} < Ilalils. This completes the proof.

1.10. Proposition. Let & be a closed *—derivation in

(1 and suppose that D (s") is dense in 0L fér some posi-

fkéi&é integer n; theﬁ the Silov algebra JD(an) with the
norm IHOH%n is of typév C.

The proof is similar with the proof of Proposition 1.9.

1.11. Proposition. = Let (L =uC(K with a totally discon-

nected compact Hausdorff spaée K; Then every closed *fdefé‘

vation § in (0l is identically zero so that D (s) =0L.

Proof. Consider the Banach algebra ‘aD(S) with the norm
HI*lll . . The space K of all maximal ideals of J)(§) is

. 8 Cef.83)
totally disconnected, so that by Silov's theorem any idempo-
tent in 7 Dbelongs to [ (§). Suppose that e is an idem-
potent; then §(e) = §(e2) = es(e) + d(e)e = 2§(e)e and
so §(e)e = §(e) = 0. Let 010 be the set of all finite

linear'combinations of all idempotents in §]; then §(a) =0
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for a € 0’10 and lllallly= llall (a € 0L ;). Since 010

is dense in ZU., 00(6) = 7 and §(x) 0 (x edl).

I

This completes the proof.

Problem 1.1. Suppose that K is not totally disconnected.
Then can we conclﬁde that C(K) has a non-trivial closed
3‘_derivation;J ( The answer «$ mo. If K Bas a Zetally oliscennoctecl 2
open clense Swhset, Then CUKD fas mo mom-tricial closed - clovivaliore )’
Now-let 7 = C([0,1]) with the unit interval [0,11
and §, = & with (s = ¢V 0,11, where V(0,11

is the algebra of all continuously differentiable functions

on [0,1]. Then ¢, is a closed *-derivation in ol .

For p € [0,1], it is well known that J(p) =
{ala(p) = a'(p) =0, a€ D(y}.

/a(p) 6, (a) (p))

Hence J(p) = {a l\ =0, ‘a¢€ 43(50)}
0

a(p)
and so JD(GO)/J(p) is a two-dimensional algebra, a unit

element together with an element of square 0.
Now let 61 be another derivation in 7= C([0,1])
with 0b(§1) = dg(éo). Then by Proposition 1.1,

Matlls, skiklis, (a € D(s5)). Let
a(p) 6&4(a)(p)
( 1 Y=o,

I = {a | a € (s,)} ; then I_ is
P \ 0 a(p) 0 P

a closed primary ideal in<0QE)‘ Since Ip c Mp . J(p) c:Ip .

Hence

1) o o ‘
The 7["”“"‘"51 preblem (s m‘emt‘"g, Suppoce. ek CLK) Ban a c{’o_,ecl.yg-c{gﬁvnﬁan.

]/;en Can W Q. Cpic E&(C{‘e 'tA‘ZI’ }( [4 g—n{m‘n_ﬁ l o, | l Zé bbg ;l'l'“ﬂ{‘
’ K d '
J ;‘; i3 Yema ftz- AD dud j——o '&]—c

Brnsom

g
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a(p) §,(a)(p)
(TP R )II; k n(

a(p) §4(a) (p)
Iy )II
0 a(p) p

0 a(p)

(a € D (61) and p € [0,1]) where kp is a positive

number depending on p.

(3P -alp)1 54 (a) (p) (alpr-a(p)t sp(a)
Il \ )Il < k “\

0 a(p)-a(p)1/ ~ P 0 a(p)-a(p)1
and so |61(a)(p)i < kpldo(a)(p)l (a € J}(&O)). Hence

there is a number A(p) such that 61(a)(p) = A(p)&o(a)(p)
(a € D(sy)) -

Put a,(p) = p (p € [0,1]); then §y(ag) =1 and
so 61(a0)(p) = A(p). Therefore we have the following

theorem.

1.12. Theorem. Let § be a derivation in C([0,1]) such

that .13(6) = C(l)([0,1]); then there is a unique continu-

ous function A on [0,1] such that ¢§ = X- é% on

¢ ro,m.

1.13. Theorem. Any derivation & defined on c'¥(fo,11)
is closable.

Proof. By Theorem 1.12, § = Aé% . Suppose that nanlle 0

and 11§ (ap)-bll> 0 with b € C([0,1]). ILet . 0=(pl(p)I>e} for

> Ozmd@kﬁ:peoe. Since C(l)([0,1]) is a Silov algebra, there
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is an element ¢ in C(1)([0,1]) such that c(p) % 0

and C(gq) = 0 for q € OE. Then anc2 -» 0 and G(ancz)

_ 5(an)c2 + ané(cz) 5 bc®. On the other hand, G(ancz)(r)=

A(r)do(ancz) (r) = A (x) {60(an) (r)c?‘(r) + an(r) (2¢c) (r}GO(C) (r)};
hence A(r) = 0 implies é(ancz)(r) = 0 and so 6O(ancz)(r) =
5(ancz)(r) 2 2 1
(D) . Therefore Go(anc )(r) » b(r)c®(r)-. N3l for
: 2
r € [0,1], where if A(r) = 0, define 2X)c (x) _ 4

A(r)

Since b(r)cz(r) . X%?T is a continuous function d on

(0,11, 8y(ae®)(r) > d(r)  (r € [0,11). Since &, is
closed, d = 0 ; hence b02 = 0. Since ¢ is arbitrary,
b(r) = 0, when A(r) # 0. It is clear that b{(r) = 0,

where ) (r) = 0. Hence b = 0. This completes the proof.

1.14. Theorem. Let § be a derivation in <€([0,1]) such
that D (8) = C(n)([0,1]) for some positive integer n,
where C(n)([0,1]) is the algebra of all n-times continuously
differentiable functions on [0,1]. Then there is a unique

d

continuous function A on [0,1] such that § = Aag .

The proof is similar with the proof of Proposition 1.12.

1.15. Theorem. Any derivation defined on CQHVI;O,IfI)

for some positive integer n is closable.

et ¢ (10,11 = n c¢™ ([0,1]); then there is no
n=1 .
norm on C(w)([0,1]) under which C(m)([0,1]) becomes a

Banach algebra, for if there were such a norm, then C(m)([0,11)

/0
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becomes a semi-simple Banach algebra so that 60 = 0,
a contradiction.
Problem 1.2. is trerc a ncn-closable derivation on

() > :
C ({0,11)> ( The o nswesi s nop 7] ny Q/Z/f,'uﬂ—?;‘urz crf- 4 w[[u//] D
,4_;‘2:-: C (E"-’,/J P 25 [é;’_;t:}/&,‘.))

Problem 1.3. Can we extend Theorem 1.13 to general cases?
Namely let Sg be a closed *-derivation in a commutative
C*-algebra (Jf1 and let § be a derivation defined on 0 (§).

Then can we conclude that § is closable?

l1.16. Proposition. Let & Dbe a closed *-derivation in
C([0,1]) and suppose that o (§) contains a self-adjoint
elemnet h such that the C*-algebra generated by h is
c([o,11).

Then there exists a *-automorphism £ on C([0,1])
(1) 1

=2
£f= 03 £

(f € C(1)([O,1])) where ) 1s a continuous real valued

such that g-1C ([0,11) < .p(8) and &8¢

function on [0,1].

Proof. TLet k = WRIIHh . L hen k(t) # k(s) if t + s.
| TR +0 7] ek (t)
. 0
Let k(t.) = inf K(t) and let P = O ___
o) = It 7= %, o

then the spectrum of n = [0,1] and t - n(t) is a homeo-
morphism on [0,1]. Moreover n € JQ (8§) and &(f(n)) =
s(me' () for £ecM o,

Consider the mapping f(n) - £ of C([0,1]) onto

C([0,1]); then it is a *-isomorphism ¢ of C({0,1]) onto

/ < !
) Tl’l-a 7emz.lé 43 e 2 \T;Kvsa‘ﬂ--

//
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c([0,1]). Moreover under this isomorphism

ES(£(n)) = E6E TEf(n) = €66 £ X.g

-

Il

(1)([0,1])- Hence €6€—1f = A é%f

for f €C

This completes the proof.

Problem 1. 4. Can we conclude that a Silov algebra J0(5)
for a closed *-derivation in C({0,1]) has a single self-
adjoint element h such that the C*-algebra generated by

h is C({0,1]1)?

Now suppose that a closed derivation 6 in C([0,1])
iskan extension of é% - i.e. § = é% on dO(é%) = C(1)([0,1]).
Since %D(d—d}-{) = C([0,1]), for any a € 0(§), there is
an element b in vO(é%) such that 6(b) = §(a) ‘and so
§(a-b) = 0. Let b= {x16(x) =0, x € D(8)} ; then &
is a subalgebra of ) (§). Moreover, |lixIli8§= lIxll ; hence

%- is a norm closed subalgebra éf c(lo,1]1).
moreover o (8) = ¢M 10,11+ & ana ¢ (ro,11) 0 &

¢1 and '5(i§) =-Q.

It

Problem 1.5. Is there a closed derivation § inm C([0,1])

such that J) (8) 2 ¢M (10,11) ana s < on cMro, 12
Remark. R. Herman communicates to the%éuthor that there is a

non-closable *-derivation §

1 such that X)(61) ) C(1)([0,1])

/2



. . d (1)
and 61 = gx ©n C ([{0,11).

1.17. Proposition. Let (L = C(T), where T 1is a one-dimen-
sional torus group and let § be a closedAerivation in 0L

such that 0 (§) is dense in {Z and 1,6 = 81, for all

t
t € T, where Tta(s) = a(t+s) (a EC(T)). Then L (§) =
C(1)(T) with ¢§ = ké% (k + 0, a constant) or fLis) = OL
with & = 0.

Proof. IHatIH6=|Ha!H6 (t € T) for a€¢(8), where

) (s) = a(t+s). Hence the mapping t - at is continuous

on L) (6§) for each a € L (§).

1 JZH -int_t
e a

. - S =
Put a = 27 |, dt (a € D (8)); then a, (x)
ins y _ ins _ _ins
e an(x). gince an(s+x) = e an(x) and an(s) = e an(m
1 -int
an(O) = 3= Jo e a(t)dt.

Since ) (8§) is dense in C(T), there is an element

a in JQ(8) such that a (0) # 0; hence eils ¢ A (8)

ins

ins in(s+t)) _ einté(e )

(n = 0,21,22,...). Tté(e ) = 6 (e
put (e ") = fn(s); then f (t+s) eintfn(s). Hence

I

int ins ins
£ e

fn(t) = e n(O) and so 6 (e ) = fn(O) .
. . £,(0) . £4 (0) .
i, _ it _ 1 it 1 d it
S({e” ") = f1(0)e = I ie = T It e ; hence
. . £,(0) .
int, _ ityn, _ 1 d int _
s (e ) = 6((e” 7)) = T ac € (n = 0,%1,2,...).
Let g(t) € ¢®) (1) and q(t) = = cnelnt :  then
o . n=-—o
g'(t) = £ cninelnt . Since ]cnnp] - 0 (n » o) for each

n=-—co

/3
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positive integer p (note g € C

o0

(T)), g'(t) =

5 cninelnt is absoluté convergent; hence §(g) =
n=-—oo

£, (0) . P

,%—~— é% {(g) for g € C(T), and C( )(T) c D (8).

By Silov's theorem (cf. [4]) 0 (8) = c(™ (1) for
some non-negative integer n. By Theorem 1.14, 4 (§) =
¢ or D) =0, 1f D& =c (1), then

(1) (0

(T) and so A = - = k.
i

§(g) = Ag' for g € C

If A (8§) = C(T), then g

0. This completes the proof.

Problem 1.6, Let 0L = CO(R), where CO(R) is the algebra
of all continuous functions on the real line R wvanishing
at infinity and let § be a closed *—derivation in CO(R)
such that Tgs = éTg (g € R). Then can we conclude that
D) = C0(1)(R) and § = k- & (x 4 0, a constant) or

dt
L (8)

CO(R) and § = 0?
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