C*-algebra a regular o-completion e AW*- factor of Type II

東北大理 斎藤和之

W*-algebra の代数的抽象化として始まった AW*-algebra の研究[]は,1970年 O. Takenouchi, Dyer I: よる non W*, AW*-factors の構成, エら 1976年 J. D. Maitland Wright I: よる Simple, separable infinite dimensional C*-algebra の negular o-completion としての non W*, AW* factor of Type II の構成 ハと 発展 した。後って 今後 の課題 は、"non W*, AW* factor を 自然 なえ 法 で構成 し みの代 数型 の 決定 及 い 分類 き する こと であるう。 この 講演では、 上の I観 異 から、 Wright I: よる "negular o-completion" O. Takenouchi I: よる 博 な 積、 ある い は Dyer I: よる構成 及 い 筆着 の 版 近 の 結里 等 き あ か せて 報告 すること に する。 詳し い 文献 は す 尾 き 参照 生 れ を い。

引では後に以降はAWL factorのtypeの判定定理を述べ [6] を2で J. D. M. Wrightに従って C*-algebra の negular 6-completion はよるAWL factorの構成を紹介しき3では、Takenouchi_ Dyer1= よる構成を紹介し引の利定定理によってそれらか type II, monotone closed な two factors があること 及びそれらの相互関係 (Dycrの構成法と O. Takenouchi p よる 持合積) き調べた 筆者の結果 き述べる。

§1 tw*-algebra 分準備 (typeの判定定理).

1. M & monotone σ - Complete $\pm W^{+}$ -algebra $\varepsilon \neq 3$. i.e. Mg hermitian part Mh \varnothing bounded above $\pm i$ increasing requence (2n) 13, Mh \varnothing 14 ε Supremum $\chi \notin \emptyset$ $(\chi_n \uparrow \chi \text{ or } \chi = \sqrt[n]{\chi_n})$.

Lemma M Di monotone o-complete tW^{\dagger} -algebra \mathcal{E} \mathcal{F} 3.

If n3 \mathcal{E} M_p (M_p) projections \mathcal{F} 1 \mathcal{F} 1 \mathcal{F} 1 in creasing sequence of projections in M \mathcal{E} \mathcal{F} 3. Supfort \mathcal{F} 1 \mathcal{F} 1 \mathcal{F} 3 \mathcal{F} 5 \mathcal{F} 6 \mathcal{F} 9 Supremum \mathcal{E} 1, \mathcal{V} 5 \mathcal{F} 6 \mathcal{F} 6 \mathcal{F} 7 \mathcal{F} 8 \mathcal{F} 9 \mathcal{F}

Theorem (L6]). Mを monotone o-complete +W+ factorと し、手をME a faithful state (73 なんなど!)とする。 をLM Di semi-finite to s la", X th la W*- factor 9€ > T, M si nonW*
to s la", M la type II t" to 3.

proof. M bi semi-finite とすると、 Jee Mp non-zero finde projection にある。 A h を 1 o 国定する。 N = e Me 13 finite AW* factor で 4(exe) = 中(exe)/p(e) 13 N x の faithful state である。

放 k [12] 1: I h 13; N 13 W 1- algebra i.e. J (Te, ge):

faithful W*-representation of N on fe i.e. The(N) C B(fe)

weakly closed *-subalgebra with unit 1 ge である。 A 1 en 3 を

Mp or any decreasing sequence: en 4 0 を まれは、Lemma x')

eene 4 0 in N fi. I y The (eene) 4 0 strongly in B(fe)で

ある。 をe(x)= exe ** x = M x L x ** x を fe(11511=1) x L x ** W ** o The o Fe

13 M x o. c.a. state x to 3 o x f (W ** o The o Fe ** e: finite ** o

projection in M y 13 ** M x o separating family of c.a. states た。

ある。 チン て [5] に ま れは、 M 13 faithful W*- representation

きもちょって、M 13 W *- factor である。 /*

注意 目様の結果がJ.D.M.Wrightによって得られている([13])。

32 C*- algebra の regular 6-completion の 般論 と 耳型, nonW*, AW* factor, 以太下 J. D. M. Wright [9,10,11,12] に従って その内容を紹介する。以下特にことから始限り C*-algebra は whitelとする。 whitelでない場合は次の枠会に報告する[7]。

1. C*-algebrasos Baire*- envelope ROHT. A: unital C*-algebra acting on the universal Hilbert space H, A" II. A or BCH)

R 3: It 3 weak closure (A or second dual A** & *-aomemphic) & \$\frac{1}{2}\$.

Definition. M monotone σ -complete AW^* -algebrea $\varepsilon \iota M \kappa$ $\varepsilon \times \sigma$ hermitian part $\varepsilon \not \delta$. Mg $\supset E \not \delta$: σ -subspace ε : $\varepsilon \delta$ ε $\varepsilon \iota \delta$, $\iota \delta \circ \varepsilon \circ \varepsilon$ hounded monotone increasing sequence $\kappa \not \star \delta \circ \varepsilon$ $v \circ \varepsilon \circ \varepsilon \circ \varepsilon$ $v \circ \varepsilon \circ \varepsilon$ $v \circ \varepsilon \circ \varepsilon \circ \varepsilon$ $v \circ \varepsilon \circ \varepsilon \circ \varepsilon$ $v \circ \varepsilon \circ \varepsilon$ $v \circ \varepsilon \circ \varepsilon \circ \varepsilon$ $v \circ \varepsilon \circ \varepsilon$

Proposition (Pedeusen \Rightarrow) $A_o^{\infty} = (A_o^{\infty})_{R} + i (A_o^{\infty})_{R}$ It A''O C*-subalgebra C^{∞} as 3.

Definition As to As Baire *- envelope * b \$\frac{1}{2}\$ is the \$\frac{1}{2}\$.

As it monotone \$6\$- complete C*-algebra \$\tau\$ is \$\frac{1}{2}\$ of \$\frac{1}{2}

Proposition $f, g \in A^{\infty} k \neq i \tau$, $f \leq g \text{ a.e.} \qquad \Rightarrow g(f) \leq g(g)$

惟レ f ≤ g a e. $\stackrel{\text{deb}}{=}$ {x; x \in OX; f(x) > g(x)} oneager.

こめことから,

Proposition. $A_o^{\infty}/g(A)$ II, monotone σ -complete C*-algebra. with identity τ , quotient map II, σ -homomorphism τ is 3. τ Sh OX by Baire-space τ Baire to τ by τ is τ in τ .

An g(A) = 103 i.e. 8 | A| II, $A = \frac{1}{100} \sqrt{g(A)} = 9 \times -\frac{1}{100}$ monomorphism: 8(1) = 1 T = 3.

3. unital C*-algebra a regular o-completion.

Definition $A \notin \text{unital } C^*-\text{algebra} \notin \mathfrak{F} \mathfrak{F}.$ (C, k) \$i A9 regular $\mathfrak{F}-\text{completion} \ T^* \not \mathfrak{F} \mathfrak{F} \mathfrak{F}$ C \$i monotone $\mathfrak{F}-\text{complete}$ C*-algebra \mathfrak{T}^* , $k:A\longrightarrow C$ *-monomorphism : k(1)=1 \$

- (i) {an3 CAR and with AAan=0 > (k(an)=0
- (ii) Cはk(A)によりの-generateとれている。ie. Cれが k(Aのも含む最小のの-subspace.
 - (iii) Chatix it, $x = \text{lub}\{k(a); a \in A_{R} \mid k(a) \leq x \}$ = $\text{gleb}\{k(b); b \in A_{R} \mid k(b) \geq x \}$

Theorem (J.D.M. Wright) $(A_o^{\infty}/g(A), 8)$ If, A or regular. σ -completion τ = 3.

proof. まず $(A_o^{\infty}/g(A), g)$ が A a monotone σ -completion τ あることを示す。 A の終には, $g(A_R)$ を含む最小の σ -subspace of $(A_o^{\infty}/g(A))_R$ が $(A_o^{\infty}/g(A))_R$ であることを示せばずか。 $g(A_R)$ を含む $(A_o^{\infty}/g(A))_R$ の σ -subspace π をじょう。 $V = A \circ A \circ A \circ G(A) \in W$ よ $A_o^{\infty} \circ G(A) \circ A \circ G(A) \circ G(A) \circ A \circ G(A) \circ G($

注意、実は、An regular o-completion は、次の意味で unique (C_1, \forall_1) , (C_2, \forall_2) を An regular o-completions と すると、 $\exists \beta: C_1 \rightarrow C_2 *-icomorphism: \beta \forall_1 = 92$ i.e.

$$A \xrightarrow{\alpha_1} C_1$$

$$\downarrow \beta \times -ieomorphism$$

$$\alpha_2 \to C_2$$

今後 A。 (g(A) = A と書くことにする。 8|A=i 海略する。 注意すべきことは、Aが simple なら Â to simple である。実際 JCA proper Closed two-sided ideal とすれば、JnA to A で proper closed two-sided ideal である。

proof. 1 ¢ Jn A ₺ L Jn A = 103 と 対 h は、 f_{\bullet} : $\widehat{A} \rightarrow \widehat{A}/J$ 1 to que tient homomorphism で、 f_{\bullet} o = f_{\bullet} | A is into *-isomorphism: $f_{\bullet}(1)=1$ f_{\bullet} l to metric bipositive, isomorphism \sharp 1)、 $b \in J_{f_{\bullet}}$ $a \in A_{f_{\bullet}}$ $a \le b$ と す 3 と、 $f_{\bullet}(a) \le f_{\bullet}(b) = 0$: $f_{\bullet}(a) \le 0$: $f_{\bullet}(a) \le 0$. $f_{\bullet}(a) \ne 0$. $f_{\bullet}($

様って、名は countable chain condition きょうから σ -fimite である。様って、名は σ -fimite, monotone complete AW^* -factor である。次の proposition にょって、名の pure states σ the space は $\sigma(\hat{A}^*, \hat{A})$ -topologyで separable である。

Proposition C & C*-algebra with a countable order dense subset (dn=dn*)

subset (dn) & to to 3. OS (S: Constate space,

dS 13 pure states \$1\$) 18 So relative topology to separable

to \$3.

proof. $U_n = \{s \in \partial S; s(d_n) > 0\}$ 用用 $\exists n : U_n \neq \emptyset$.

O any non-empty open subset of ∂S , $e \in O$ とすれは、 $\exists b \in C_h$:

 $e \in \{s; s \in \partial S; s$

以上から A it faithful state きち、しかも OXA it separable 従って Aが W*-factor はらは、minimal projection きもつことになり Â it type 1 、not finite dimensional より、not simple とはり手盾 もって、A it faithful state きもつから最初の判定定理より A it type II である。 i.e. A it non W*, monotone closed. AW* factor of type II である。 A と I で I は Glimm の UH Fi-algebra とか two-generator の free group からつ くられる Qroup C*- algebra とすればよい。 以 L か J. D. M. Wright の構成の あらましてある。 許しくは [9,10,11,12] き参照。

第3 Cross product Construction 並に Dyer's Construction 17 ま3 II型のAW*-factorの構成、

以下 O. Takenouchi [8]に従って、cross product constructionの概略を述べる。 Ze alulian AW*-algebra, G を Zの *-

unto morphisms g > 0 3 a group, $a \rightarrow a^3$ $\in X$ g action $e \neq 3$.

I. Kaplanaky $[3] : \mathcal{K} > \tau$, $AW^* - module$ $M \in 7$ $(3 \cdot M) = \{ x = (xg) ; xg \in \mathbb{Z} \ \forall g \ \exists xg^*xg \in \mathbb{Z} \ (\mathbb{Z} \ c^* \text{ order } \mathbf{u}\mathbf{x}) \}$ et this M is canonical +3 \mathbf{h} \mathbf{f} \mathbf{f}

(F) $p \in \mathbb{Z}_p$ absolutely fixed to s p = 0 i.e. $\forall g \in \mathbb{Z}_p g \leq p$ $\forall x \neq i \tau$, $g = g + g \in G \Rightarrow p = 0$,

(E) $a\theta = a \quad \forall g \in G \quad a \in \mathbb{Z} \quad \Rightarrow \quad a = \lambda 1 \quad \lambda \not \rightarrow h \not = -1$

(Z,G) 0 131 tit Z = B = [0,1)/~ ([0,1) to bounded

Baire functions の入る (*-algebra さ. meager set & supports k もう functions の の一 i deal で 割った AW* algebra.) G=Ge 1年l Go IJ. 1 m + no; m, n = 0, ±1, ±2, … 3 (o given irrational) 1= 3') Io. 1) Lo. translations (mod 1) の homeomorphisms group を 年之 : れき 足 k 自然 k あ げた *-automorphism group とする。

Thenem ([8]) M(Z,Go)は nmW*, AW*-factorである。
proof もしM(Z,Go)がW*ならは、発 後って、そがW*となり
事情する。

以土於 [8]の概略である。次に Dyer の example 1= つりて説明する。 $\mathcal{H} = B^{\infty}$ [0,1), \mathcal{G} は zeroではいと ころが meager set になっている \mathcal{H} の \mathcal{H} の \mathcal{H} の \mathcal{H} かの - separable Hilbert space with cros \mathcal{H} に \mathcal{H} る。 \mathcal{H} なる。 \mathcal{H} なる

 $A_{x,y} = (Ae_{x}, e_{x})$ $A \cap \langle A_{x,y} \rangle$: $E_{0}, 1) \times E_{0}, 1) \longrightarrow G_{0}$ 関数を対応させる。

OG = { A; A
$$\in$$
 73(H); A α , y = $\delta \alpha$, y f(α), f \in OG }
 $\mathcal{G}_1 = \mathcal{G}_2$. \mathcal{G}_3

 $\mathcal{H}_0 = \{ A \in \mathcal{B}(H) \} A \alpha, y :$

(1) $A\alpha, y = 0$ except for $y - x = j \cdot 2^{-k}$ for some $k \ge 1$ $-2^k < j < 2^k$ (2) $k \ge 1$ $0 \le i, j < 2^k$ $k \ne i \ne i \ne i \ne j$ $f(\alpha) = A_{2^{-k}(i + \alpha)}, 2^{-k}(j + \alpha) \in \mathcal{O}$ $g_0 = \{ A \in \mathcal{V}_3(H) : A_{x,y} : (1)$ (2) $f_{(x)} = A_{2^{k(i+x)}}, 2^{h_i(j+x)} \in g_j$

と 対 れ は、 の。 は C+-algebra nith unit go は two-sided ideal of No lineworm (Dyer [1]) の o/g。 は の o/g。 は の o/g。 を maximal alulian. *-subalgebra とに もっ $+W^*$ factor よって non W^* - で ある。 の o/g $= \Xi$ r 注意.

アドこれら M(Z,Go), Oc./g。のtype 及びそれらの関係について考察してみまう。[6]

まず Z = Boro, 1)/~ 13, non W*, elelian AW*-algebra である
が reparable C*-algebra a regular o-completion とおり 後って、
Countable order dense subset を * 5 1年 > て、 Z 13 faithful g は す 3.

State を も つ 。 実 は、 M(Z, G) の > < 1) を から M(Z, G) onto

Ž の faithful positive projection map を が ま る 。 今

Y = 9 の を と す る と、 Y は IMC Z, G) 上 の faithful state

1 を > て、 Therem of \$ 1 1: よ り

Theorem ([6]) IM(Z, Go) 18, type TIL, monotone closed of finite AW+ factor T" & 3.

同様にして、 $O(o/g_o)$ onto $O(i/g_o)$ of aithful positive projection map Φ' か、おり、 $Y'=g\circ \Phi'$ とすると $O(o/g_o)$ は faithful state Y' きもう。 又 ><9 るから $O(o/g_o)$ は monotone o-complete になるから P は P になるから P は P になるから P になる P

Theorem ([6]) Oco/go 12 monotone (o) closed type III
o-finite AW & factor to \$3.

Got [0,1) of dyadic rationals of hamolates 1: \$777<5 対3
[0,1) of homeomorphism 1: 31) induce th 是 7 *-automorphisms
group とすると、 (I,Go) は (E), (F) も満すか

Theorem ([6]) $\mathcal{O}(0/g_0)\cong \mathrm{IM}(Z_0,G_0)$ to $\mathcal{O}(0/g_0)$ it monotone closed to \mathbb{R}^3 .

証明の概略 $A \in O(0)$ $A + g_0 \in O(0/g_0)$ $A \land \langle A_{x,y} \rangle$ はらば、 $A_{x,y} = 0$ except when $y - z = j \cdot 2^{-k}$ for some $k \ge 1$, $-2^k < j < 2^k$, $k \ge 1$ $0 \le c$, $j < 2^k : x \longrightarrow f(x) = A_{2^{-k}(c+x)}, 2^{-k}(c+x)$ $(0 \le x < 1)$ $\in B^{\infty}[0,1) = O(0)$ 後って、 $g \in G_0$ K 対して、 $A_{6g}(x)$, x It [0,1) to bounded Baire function K なる。 $\phi \in O(0)$ onto $O(\log g)$ canonical map $e \neq h$ it.

 $(a_{g}, e^{\frac{\alpha g}{2}} \quad \phi(x \rightarrow A_{6g(x)}, x)) \quad \forall g \in G_{0}$ $\forall L \subset C, \quad a_{g}, e \in A \quad \notin A + g_{0} \quad \emptyset \quad \exists I = J \leq J \quad \forall J \in M_{0}.$ $(a_{g}, h) = (a_{g-h}, e)^{h} \quad \forall g, h \in G_{0} \quad \forall i \in C_{0}, \quad (a_{g}, h) \in M_{0}.$ $dounded \quad module \quad endomorphism \quad \forall (A + g_{0}) \neq define \quad \exists J_{0}. \quad \exists h \in J_{0}.$ $\sum_{g \in G_{0}} |A_{6g(x)}, x|^{2} = \sum_{g \in G_{0}} |(A_{ex}, e_{g(x)})|^{2}$ $\leq \sum_{g \in G_{0}} |(A_{ex}, e_{g(x)})|^{2} \leq \|A_{ex}\|^{2} \leq \|A_{ex}\|^{2}$

に注意して, b s = (xg) + m に対じて,

 $\sum_{k \in G_0} |\sum_{q \in G_0} \chi_q (|q_q|^2 \le ||A||^2 ||\xi||^2$); \vec{R} \vec{L} \vec{J} \vec{J} \vec{L} \vec{J} \vec{L} \vec{J} \vec{L} \vec{J} \vec{L} \vec{J} \vec{L} \vec{J} \vec{L} \vec{L} \vec{L} \vec{J} \vec{L} $\vec{L$

i.e. $A+g_0 \longrightarrow +(A+g_0)_{i\bar{\delta}}$. $+(A+g_0)_{g_1}h_1 - a_{g_1}h_1 + y_0$ Yo / g_0 into $IM(Z, G_0)_{G_0} \times -isomorphism$ ("\$3. onto \$\delta\, $X \ni 0 + G_0 = 1$) with $A = X \land A_{g_1}h_2 + X \nmid G_0 \neq 1$. A Baire set contained in a oneager set in $(G_0, G_0)_{G_0} + G_0 = 1$. A $G_0, h_1 \in B_0 \cap (G_0, G_0)_{G_0} + G_0 = 1$.

 $u_{gh}(x) = u_{gh}(x) = u_{gh}(x) = u_{gh}(x) = u_{gh}(x)$ $= 0 \qquad x \in I$

 $\left| \sum_{g,h\in G_{0}} a_{g'h}(x) \cdot \int_{\eta} \eta_{g} \right| \leq \|A\| \left(\sum_{h\in G_{0}} |\xi_{h}|^{2} \right)^{\frac{1}{2}} \left(\sum_{g\in G_{0}} |\eta_{g}|^{2} \right)^{\frac{1}{2}} \forall x$ $\left| \forall \{\xi_{n}\}, \{\eta_{n}\} \in \ell^{2}(G_{0}) \right|_{0}$

 $\langle Ax,y \rangle$ \Rightarrow Ax,y = 0 except when $x - y = \hat{d} \cdot 2^{-k}$ for some $k \ge 1$, $-2^k < \hat{d} < 2^k$, $A \in_{\mathcal{G}}(x)$, $x \equiv G_g(x)$, $x \equiv G_g(x)$ $0 \le x < 1$ $g \in G_0$ $e \notin_{\mathcal{G}}(x)$ $f \in_{\mathcal{G}}(x)$ $f \in_$

\$4. 注意.1. 奥日. 今までの、Cto/go(⊆IM(Z,Go)), IM(Z,Go), A 1+ 5 finte to Ai "very hig" である。c.c. 牡何る non-trivial to reparable な表現を古たない。 実際 もしんのおな

表現 (T, 引) きもては、Eの世間 6-finite AW*-factorは覧 Simple であるから、TI faithful、又気が separable ty 元は projections E completely additive i.e. to example は c.a. states き 気分沢山もつことに ナナリ Pedersen [] によれば W*-algebra となる。これは声情である。

2. 我たは、IM(Z, Go), MCZ, Go), A (simple C*-algebra A) き得たがこれらの関係はどのようになるか?が次の内題で ある。 X前にもちょっとみれたが identity きまたない C*-algebra a regular o-completion とか Xの structure theory 質いるいる 内題が あるがこれは次の科会に中すりたい。[7]

LX t.

参考之献

- It] J. Dyer, Concerning AW * algebras, To appear in J. Functional Anal..
- [2] R.V. Kadison and G.K. Pedersen, Equivalence in operator algebras, Math. Scand., (19170), 205-222.
- [3] I. Kaplansky, modules over operator algebras, Amer. J. Math., 75(1953), 839-858.
- 14] G. K. Pedersen, Operator algebras with weakly closed abelian subalgebras, Bull. London. Math. Soc., 4 (1972), 171-195.

- 15]. K. Saito, A non commutative theory of integration for a Semi-finite AW*-algebra and a problem of Fieldman,
 Tohoku Math. J., 22 (1970), 420-461.
- and examples by Takenouchi and Dyer, To appear in Tohoku Math. J.,
- of C*-algebras (復題) 準備中.
- [8] O. Takenouchi, Preprint, 1970.
 - [9] J. D. Maitland Wright, On minimal o-completions of C*-algebras, Bull. London Math. Soc., 6(1974), 168-174.
 - J. London Math. Soc., 12 (1976), 299-309.
 - J. London Math. Soc., 12 (1976), 431-439.
 - Rickart algebras, J. London Math. Soc., 13 (19776).
 - [13] & ______, On semi-finite AW+_algebras, Math.

 Proc. Camb. Phil. Soc. (1975), 79 443 445.