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ABSTRACT

For the case of the traditional three poles, we give a
straight-line algorithm in the sense that it is not recursive.
This algorithm only needs a constant memory not depending on

the number of disks N. For the case of four or more poles,

we propose a recursive procedure not using the dynamic progra-

mming technique. Then in a certain proposed algorithm we
derive an explicit expression for the number of moves of disks
as a function of N disks and m poleé. In this algorithm the
number of moves decreases mohotoneously in terms of m but its

limiting value is 3ﬁ°gzm

although 2N+l is the minimum

number of moves for m>N+l. So we give a modified algorithm
and its associated recurrence equation for the number of
moves. This equation is solved numerically since it is diffi-

cult to derive the explicit expression for its solution.

This result shows that the modified algorithm is near optimal.
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1. Introduction

A study on programs or algorithms for the traditional Tower
of Hanoi puzzle may be considered to become an appropriate
object in the fields of the artificial intelligence and the
complexity of aléorithms. Some would say that this problem
is traditional and already settled. However, as far as the
authors know, little attention is paid to storage spaces and
computation steps on executing this problem by computers. We
focus attention on this point.

In Section 2, for the case of the traditional three poles,
we give a straight-line algorithm in the sense that it is not
recursive. This algorithm only needs a constant memory not
depending on the number of disks N.

In Section 3, we discuss the case of four or more poles.
This case is considered in [ 1] where the minimum number of
moves of N disks for N <64 is computed by the dynamic progra-
mming technique and the implicit expression for the number
is given as an exterpolation of this result without proof.
Furthermore, for the case of six or more poles, the implicit
expression for the number of minimum moves is also given as
a conjecture from the foregoing result. In [ 2], the minimum
number 6f moves for the case of four poles is also computed by
the dynamic programming technique. Since these studies depend
on the dynamic programming technique, one might be afraid that
trimendous memories and computation steps need in order to
perform moves of disks by computer for a large number of disks.
Hence, we propose a recﬁrsive program not using the dynamic

programming technique. Then in a certain proposed algorithm
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we derive an explicit expression for the number of moves of
disks as a function of N disks and m poles. In this algorithm
the number of moves decreases monotoneously in terms of m but
its limiting value is 3ﬁog2ﬂ . However, for large N, 3ﬁog2ﬂ

is much greater than the minimum number of moves 2N+1 for m > N+1,.
So we give a modified algorithm and its associated recurrence
equation for the number of moves. This recurrence equation

is solved numerically since it is difficult tc derive the

explicit expression for its solution. This result shows that

the modified algorithm is near optimal.

2. Straight-line algorithm

The Tower of Hanoi puzzle: there are three poles Pl'

with N different sized disks stacked on Pl' The disks are

P2’P3
arranged in decreasing order with the largest one on the bottom
and the smallest one on the top of the stack. Then move the
disks one at a time from one pole to another, never putting
a larger one on a smaller one, and eventually transferring the N
disks from P, to P,.

Let n,(x,y) denote the moving sequence of r disks from P, to

P

y Then a solution of the above problem is expressed by the

following recursive equation
HN(1,3)=HN_1(1.2)-H1(1.3)~HN_1(2'3) (1)

If we accord meekly with the equation, the program will become
recursive. If we can not use a recursive program, we probably
ask for the case of N=1, and then for the case of N=2 and so on.

Many memories and computation steps will need in either procedure.
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Let M(i), denote the total number of moves done until the
disk Dj has been moved k times and let M(r) denote the length
(the number of moves) of the sequence I,(x,y) (x#y).(Note that
the length of the sequence 0,(x,y) (x#y) does not depend on X
and y). Then M(i)y can be described by M(i)y_; moves done
until the (k—l)st move Of D; has been done, and M(i-1) moves to
stack Dj,...,Dj_; on Dy, followed by one move of Dj,4q and then
M(i-1) moves to transfer Dj,...,Dj.j to some pole not having
Ditye followed by one move to stack D; on Dy.,. Theréfore, we

have the following equation

=M(i)y_q +2 ' (2)

(It is well known that M(i)=21—1)

The equation is recursive and the following equation is easily
derived.

M(i), =M(i); + 2" (k-1) : (3)
On the other hand, since M(i)l=M(i—l)+l=21_l,

M(i), =271 (2k-1) (4)
Conversely, when an arbitrary positive integer t is given,
we can uniquely determine the disk which is moved at the t-th
move and the number of the time of the move in the successive
moves of the disk. Let D,y be such the disk and let k(t) be

such the number of the time. Of course, g=22(0)-1

(2k (t)-1).
a(t) can be determined by log,t divisions and k(t) by one division.
Later we discuss the determination of a(t).

Next, we need the information ofifrom which pole to which pole
the disk should be moved. The following property is known.

In Fig.l, let the counter clockwise move (from P; to P,, from

P, toPj or from P43 to P;) denote by +1 and let the
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Fig.l

clockwise move denote by -1. Then for given number of disks N
the move direction is determined for each disk. That is, that
of D; is (—1)N+rﬂ'. Therefore, the k-th move of each disk
becomes as follows.

(1) If the move direction is +1, from %kﬁl)m0d3+1 to P, 4341

(ii) If the move direction is -1, from Pzaoi)mod3+lto

P2kmod 3+1 ¢
Summarizing the above result, we could give a straight-line
élgorithm. However, we discuss a little about deciding a(t)
since it takes relatively long if it is done directly.
From =297 2k (t)-1),
(i) if t is odd, a(t)=1 and k(t)=(t+l)/2, and
(ii) if t is even and

(a) if a(t) >3, a(t+2)=2 since t+2=23(':)—l (2k(t)-1)+2=

22297 2k e)-1)+1)-1),
(b) if a(t)=2, a(t+2)=a+3 and k(t+2)=8 where k(t)=
2% (28-1), since t+2=2(2k(t)-1)+2=2"k(t)=2"""1(28-1).
Now, summarizing the above consideration, we give the following

algorithm.

Algorithm 1. A straight-line algorithm for the Tower of Hanoi

with three poles
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Input. The number of disks N and the set of poles {1,2,3}.
output. The sequence of moves of disks consisting of pairs of
poles. (i,j) means'from pole i to pole .
Method. The algorithm consists of a procedure call, HANOI(N),
in which a procedure AK(t,a,k) is used to decide a(t) and k(t)

for t.

procedure HANOI (N)
begin
t <« 1;
. N
while t <2 do
AK(t,a,k);

a+N

i<« {((-1) +3) (k~1)/2} mod 3 +1

j« {((-1)2"

+3)k/2}mod 3 +1
print (i,3)
t«t+1

end

procedure AK(t,a,k)
begin
if t is odd then return a<«1 and k<« (t+l1)/2;
else
begin
if t=2 then return a<« 2 and k<« 1:
else
if (t-2)/2 is odd then AK(t/4,p,q):
return a <« p+2 and k <« q;
else return a<« 2 and k « (t+2)/4;
end

end
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3. Tower of Hanoi with four or more poles

We consider the general problem: Given m poles with N disks
stacked in decreasing order of size on pole P;. Move the N
disks one at a time from one pole to another, never putting
a larger one on a smaller one, and eventually transferring
the N disks from P; to P, , in steps as small as possible.

Let o(N,m) denote the minimum number of steps(moﬁes of disks)
Consider the followiﬁg algorithm: First, take n; disks from
the top on P; and by using m poles construct a tower consisting
of them on some pole (denoted P,) except P,. Next, transfer
the remaining N-n; disks on P; to P, by using m-1 poles except
Py, and thén the n; disks on P, to P, by using m poles, comple-
ting a final tower.

From the above algorithm, we have
20(n; ,m)+ o(N-ny ,m-1) > ofN,m).
Similarly, wé have |
- 20(ny,m)+ oln;=ny,m-1) > o(ny,m).
In general, we have
20(n;,m)+ o(ny_j-ngy,m=1)>oln;_4,m) i>1l, n =N (5)
Therefore, we have

i i-1 oo i-1
2t o(ni,m)+21 oln; _;-n,,m-1) > 2" olng_q,m)

i>1, n, =N (6)

Summing up (6) from i=1 to g, we have
q q _i-1
2 o(nq,m)+i§lz oln;_; -n; ,m=1) > o(N,m) (7)

If we put ny_; -n;=d for 1l<i<q, then N—nh=qd. If ng=0, that is,

N is divided by g (or d), N=qd and
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(29-1) o(d,m-1)=(29-1) o(N/q,m-1)

> o(N,m) (8)

Using (8) succesively, we have
q : . . s
(21 -1) o(N/q, ,m-1) 2o(N,m)  if N is divided by qj .

(2%2 -1y o(N/q, q, m-2) 2 o(N/q) ,m-1) if N is divided by q;q,-

qm'-4 . . P
(277°-1) o(N/qq.-.qy_4ed) > o(N/qy «--dy_g¢5) if N is divided

by qy---qu_4-
q Y . . . .
(zm—Q_l)cﬂn/ql...qm_3,3) ;(ﬂN/ql...qm_4,4) if N is divided
by qqe-9y3 -

Therefore, we have

(2% -1y (2%2-1) ... 2731 o(N/q,q, - -2y #3) 2z ONM)
if N is divided by 9y -9y 3

Finally, we have

/4y« -Ag-

‘N
(2% -1y (292-1) ... 2721 (2 3.1) > o(N,m)

(9)
if N is divided by qy---9p-3 -

1f N @ 2jg an integer, we put q,=qy=---=9_3 —n /@2

Then (9) becomes

(le/(m—Z) _ 2

1)™“ > o(N,m) (10)

In general, we have

> o(N,m) for m-2 < log,N
(11)
3r1°gzbﬂ_>__ o(N,m) for m-2 > log,N

where [x] is the least integer equal to or more than x.

The following properties hold.
1/ (m-2) ‘
(1) lim 2V _1p2 _y2log2 y1.38629
1/ (m-2)
2N -

(2) l)"“—2 decreases monotoneously in terms of m (>3).



226

It is easily shown that o (N,m)=2N-1 for m>N+1. Table 1

2log2

shows the comparison of N with 2N-1.

‘From the property (2) and Table 1
N | n21o82 /(2n-1)
it seems to be able to conclude
10 1.28097
the goodness of the above algo- 20 1.63133
‘rithm. But for large N n21og2 50 2.28894
becomes much larger than 2N-1. 100 2.97668
. 200 3.88086
Hence, we introduce a modified 500 5.52074
algorithm in which the number of 1000 7.21217

moves becomes 2N-1 for m> N+1.
Table 1. The comparison of

2log?2 : _
Algorithm 2. A recursive algorithm N with 2N-1
for the Tower of Hanoi with three or more poles, not using

the dymanic programming technique.

Input. The number of disks N, the number of poles m>3 and

the set of poles {1,2,...,m}.

Output. The sequence of moves of disks which are given by

pairs of poles. (i,j) means 'from pole i to pole j.

Method. The algorithm consists of a procedure call, HANOI(N,m),
in which a procedure MOVE(n,m,i,j,S) is used. The procedure
MOVE(n,m,i,3,S) gives the sequence of moves of n disks on the

top of pole i to pole j, using none of the set S of poles.

procedure HANOT (N,m)
begin
MOVE (N,m,1,m,d)

end
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procedure MOVE(n,m,i,j,S)
begin
if m-|S|=3 then return HANOI(n); where the pole numbers
1, 2,and 3 in HANOI(n) is renamed by i, j,and k,
respectively, (k€{1,2,...,m}-{sY{i,j}}), and |S|

denotes the number of elements of S;

else
begih
if n=1 then return print (i,j);
else
if n+l <m-|S| then return
print (i,k); MOVE(n-1,m,i,j,SVY{k}); print (k,j);
where keé{l,2,...,m}-{SV{i,j}};
else
P« Ln(n-—ll(n—l) _n-ll(m—z-lSI)_M +1;
return MOVE(p,m,1i,k,S); |
MOVE (n-p,m,1i,3,SU{k});
MOVE (p,m,k,3,S);
where ke{1,2,...,m}-{SU{i,j}} and |x] is
the largest integer equal to or less
than x;
end

end

Let f(N,m) be the number of moves of disks in HANOI (N,m).
Then we readily have the following equation.
£(N,3)=2N-1,
for m> 4
2N-1 for N+l z<m
f(N,m)= { (12)
2f(n,m)+£ (N-n,m-1) for N+l > m where

n= [N (n Y/ Dy @-2) )y

- 10 -
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The values of f(N,m) derived by numerically solving the recur-
rence equation (12) are shown in Table 2 in which the values in
parenthesis are given or conjectured in [1]. Table 2 shows
that our result is not optimal but near optimal for m=4 and 5.
We will consider that our result is also near optimal for all

m 6.

4. Conclusion

Analyzing the traditional Tower of Hanoi puzzle, we have
given a straight-line algorithm which is not recursive.
This has an advantage of only needing a constant memory.
Furthermore, we have investigated the Tower of Hanoi with four
or more poles and have given a near optimél recursive algorithm

not using the dynamic programming technique.
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N 4 5 6. 7 10 20
2 3 ( 3) 3 ( 3) 3(  3) 3¢ 3| 3¢ 3 3 (3
3 5 ( 5) 5 ( 5) 5( 5) 5( 5) 5 s 5(C .5
4 9 ( 9) 7 ( 7) 7 ( 7) 7 ( 7) 77D 7C D
5 13 ( 13) 11 ( 11) 9 ( "mv 9 ( 9) 9 9 9C 9
10 57 ( 49) 35 ( 31) 29 ( 29) 27 (. 27) 21 ( 21) 19 ( 19)
20 353 ( 289) 127 ( 111) 89 ( 89) 75 ( 67) 61 ( 61) 41 ( 41)
30 1153 ( 1025) 303 ( 271) 185 ( 169) 143 ( 143) | 101 A,HOHV 81 ( 81)
40 2945 ( 2817) 559 ( 511) 313 ( 289) 231 ( 223) | 157 ( 141) | 121 ( 121)
50 6913 ( 6657) 943 ( 831) 473 ( 449) 343 ( 303) | 225 ( 201) | 161 ( 161)
60 15361 ( 14337) 1471 (. 1279) 697 ( 629) 471 ( 415) | 297 ( 281) | 201 ( NOHV
100 176129 (  172033) 5855 ( 4863) 2017 ( 1729) | 1215 ( 1055) | 637 ( 601) | 361 ( 361)
200 15204353 ( 14680065) 53887 ( 36863) | 10257 ( 7297) | 4863 ( 3839) | 1953 (1681) | 993
300 478150657 (385875969) | 251903 ( 143359) | 30305 (19457) | 11647 ( 8575) | 3897 (3281) | 1741
500 2478079 (1015807) | 131905 (68097) | 38095 (23807) | 9425 (6561) | 3441
Table 2. The values of f(N,m) (The values in parenthesis mHm,ow,\mb or conjectured wn [11)
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